

Table of Contents
 Pure Data..1

 Real Time Graphical Programming...2
Graphical Programming...2
 Real Time..3

What is digital audio? ..4
Frequency and Gain...4
Sampling Rate and Bit Depth..4
Speed and Pitch Control..5
Volume Control, Mixing and Clipping..6
The Nyquist Number and Foldover/Aliasing...6
DC Offset...7
Block Size..7
It's All Just Numbers ...7

Installing on OS X...9
Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger..11

Installing on Windows..16

 Installing on Ubuntu..26
 Installing libflac7 and libjasper...26
 Installing Pure Data...28

Installing on Debian..31

 Configuring Pure Data..35
Basic configuration..35
 Audio drivers..35
 MIDI drivers (Linux only)..36
Audio Settings..36

Sample rate..36
 Delay (msec)...36
 Input Device...37
 Output Device...37

 MIDI Settings...37
 Test Audio and MIDI..38

Advanced configuration...39
 Startup Flags...40
Path..41
Platform-Specific Configuration Tools..42

Linux...42
OS X..43
Windows..44

 Starting Pure Data...46
 Starting via an icon...46
 Starting via command line..46

 Linux (from xterm)...46
 Mac OSX (from Terminal.app)..46
Windows (from the DOS shell or Command Prompt)..46

Starting from a script...47

i

Table of Contents
 Starting Pure Data

Windows..48
Linux and OS X...48

Advanced scripting for starting Pd..48

 The Interface..50
Starting a new Patch...51
Interface differences in Pure Data..52

Linux...52
Mac OS X..52

Placing, connecting and moving Objects in the Patch...53
Edit Mode and Play Mode...56
Messages, Symbols and Comments...58
GUI Objects...59

GUI Object Properties...60
Arrays and graphs..61

Graph...62
A Note on using GUI Objects..62

 Troubleshooting...63

Building a Simple Synthesizer...68
Downloads...69

Oscillators..70
Sine Wave Oscillator...70
Sawtooth Wave Oscillator...70
Square Wave Oscillator...70
Other Waveforms...71

Frequency..72
Audio vs Message Cables..72
MIDI and Frequency..72

Additive Synthesis...74

Amplitude Modulation...76
Simple AM Synthesis..76
Tremolo..76
Ring Modulation..77

Frequency Modulation...78

Square Waves and Logic..80
Pulse Width Modulation..80
Math & Logic Operations..81

Generating Waveforms..83
Outline...83
Introduction..83
Using Sinesum...83
Sawtooth Wave..84
Playback of the Graphed Waveforms..85
Triangle Wave..86

ii

Table of Contents
Generating Waveforms

Square Wave..86

Normalizing & DC Offset...88

Antialiasing..92
Outline...92
Introduction: What is Aliasing?...92
The Problem: an Aliasing Oscillator..92
Oversampling and Filtering...92
Bandlimited Waveforms..93

Filters...95
Low Pass Filter..95
High Pass Filter..95
Band Pass Filter...96
Voltage Controlled Filter...97

The Envelope Generator..99
Simple Envelope Generator Using [line]...99
Complex Envelope Generator Using [vline~]...100
Envelopes Stored In Arrays...101

The Amplifier..104
 Using a Slider..104
Using [line~], [vline~] and [tabread4~]...104

Controlling the Synthesizer..106
Input from the Computer Keyboard...106
Input from a MIDI Keyboard...107

Building a 16-Step Sequencer..109
A Counter...109
Hot and Cold..109
Storing and Retrieving MIDI Note Values..110
The Finished 16-Step Sequencer Patch..111

A Four Stage Filtered Additive Synthesizer...113
The Input Stage..113
The Oscillator Stage...114
The Filter Stage..114
The Amp Stage..114
Subpatches...115

Dataflow Tutorials..118

Messages ..119
Message Boxes...119
 Packing elements and variables..120
Deconstructing messages: unpack and route...120

Math...124
Simple arithmetic...124
Higher math...125

iii

Table of Contents
Math

Trigonometry...125
Fraction work...126
Numbers and ranges...126
Random numbers...127
Relational operators...128
Conversion between acoustical units...128
Bit twiddling..129
Expr..129
Audio math..129

Lists..130

Order of Operations ..131
Hot and Cold Inlets..131
Order of Connecting..132

Trigger...132
Depth first message passing...132

Wireless Connections..134
What kind of data can be sent?..135
Throw and Catch..135

Subpatches...137
Subpatch Inlets and Outlets...138
Closing and Reusing Subpatches...139

Abstractions...140
Saving Abstractions...140
Calling and Editing Abstractions...141

Dollarsigns...142

Graph on Parent...145

Arrays, Graphs and Tables..148
Creating an Array ..148
Using Arrays to Display Audio ...149
Writing Data to an Array ..149
Reading Data from Arrays...150
Using Arrays to Play Back Samples..151

GEM...153

What GEM Is For...154
GEM & OpenGL..154
The Very Basics of Rendering...154
[gemwin]..154
gemhead...155
Let's get started..155...156
pix_objects and and 3D Shapes...156

iv

Table of Contents
Images, Movies and Live Video...157

[pix_image]..157
[pix_film]...157
[pix_movie]..158
[pix_video]...158
Related Objects..159

GEM mini-video mixer.. ..160
...161

2- Adding webcam / live video input:..161
3-chroma key ..162
[pix_gain]...162...163
[pix_threshold]...163
Recording movies with pix_record..165

Animations of still images...165

 GEM window properties:..167
1- fullscreen...167
2-Extended desktop, ..167

[pix_movement]..168
[pix_background]..168

[pix_blob]..168
Getting the coordinates...169

Game Controllers..171
Start with the Keyboard...171
Mouse Cursor...171
USB HID..172

What do "abs", "rel", and "key" mean?...175
Make Your Own HID..175
 HID to Pd..176
Pduino: ..177

Open Sound Control (OSC)...184
OSC in Pd..184

Connecting two computers..185
MIDI to OSC...185

[netsend] and [netreceive]..187
[netsend]...187
[netreceive]..187
Connecting with other applications...188

Midi..189

Setup...190

Channels and Ports...191
Multiple Devices..191

3-Midi hardware: ...192

v

Table of Contents
4- Making notes in pd, Sending / reciving notes. ...194

5- Midi controllers...195

 6- Sending midi to other softwares, sending CC (control change)...197

 7- Another midi objects:..198

 Streaming Audio..199
 1. Create the mp3cast object...199
 2. Connect an osc~ object...199
 3. Settings..199
 4. Start the Stream..201
 5. Streaming from The Mic..201
6. Disconnect..202

 oggcast~...203
 Parameters...203
Streaming from your Sound Card..204
Streaming from Pure Data audio..204

Tips..205

Object List...206
Dataflow...206

Audio...206
Patch Management..206
External libraries...206

Vanilla and Extended Objects..206
Organisation...207
Name..207
Library/Path...207
Function...207

GLUE...208
Name..214
Library/Path...214
Function...214

Math...215
Name..219
Library/Path...219
Function...219

Time..220
Name..220
Library/Path...220
Function...220

Midi..221
Name..221
Library/Path...221
Function...221

vi

Table of Contents
Tables...222

Name..222
Library/Path...222
Function...222

Misc..223
Name..224
Library/Path...224
Function...224

Audio Glue...225
Name..226
Library/Path...226
Function...226

Audio Math..227
Name..228
Library/Path...228
Function...228

Audio Oscillators and Tables...229
Name..230
Library/Path...230
Function...230

Audio Filters..231
Name..234
Library/Path...234
Function...234

Audio Delay...235
Name..235
Library/Path...235
Function...235

Subwindows...236
Name..236
Library/Path...236
Function...236

Data Templates and Acessing Data...237
Name..237
Library/Path...237
Function...237

GEM...238
Name..242
Library/Path...242
Function...242

PDP...243
Name..244
Library/Path...244
Function...244

vii

Table of Contents
Physical Modelling..245

Name..245
Library/Path...245
Function...245

Obsolete..246

Glossary...247
Glossary Terms..247

 Pd Links..258
Pure Data Software..258
Externals..258
Linux Distributions with Pd...258
Tutorials & Examples..258
Getting Help...259

License..260

 Authors..261

 General Public License..271

viii

Pure Data
Pure Data (or Pd) is a real-time graphical programming environment for audio, video, and graphical
processing. Because all of these types of media are handled as data in the program, many fascinating
opportunities for cross-synthesis between them exist. Sound can be used to manipulate video, which could
then be streamed over the internet to another computer which might analyze that video and use it to control a
motor-driven installation. Pd is commonly used for live music performance, VeeJaying, sound effects
composition, interfacing with sensors, cameras and robots or even interacting with websites.

The core of Pd is written and maintained by Miller S. Puckette (http://crca.ucsd.edu/~msp/) and includes the
work of many developers (http://www.puredata.org/), making the whole package very much a community
effort.

The community of users and programmers around Pd have created additional functions (called "externals" or
"external libraries") which are used for a wide variety of other purposes, such as video processing, the
playback and streaming of MP3s or Quicktime video, the manipulation and display of 3-dimensional objects
and the modeling of virtual physical objects.

Pd runs on Linux, Windows and Mac OS X, and there is a wide range of external libraries available which
give Pd additional features.

 Pure Data 1

http://crca.ucsd.edu/~msp/
http://www.puredata.org/

Real Time Graphical Programming
Traditionally, computer programmers used text-based programming languages to write applications. The
programmer would write lines of code into a file, and then run it afterwards to see the results. Many sound or
visual artists, as well as other non-programmers, find this a difficult and non-intuitive method of creating
things however.

(
{
// example by James McCartney
var signal, delay, reverb;

// 10 voices of a random sine percussion sound:
signal = Mix.fill(10, {Resonz.ar(Dust.ar(0.2, 50), rrand(200.0, 3200.0), 0.003)});

// reverb predelay time:
delay = DelayN.ar(signal, 0.048);

// 7 length modulated comb delays in parallel:
reverb = Mix.fill(7,{CombL.ar(delay, 0.1, LFNoise1.ar(0.1.rand,0.04,0.05), 15)});

// two parallel chains of 4 allpass delays (8 total):
4.do{ reverb = AllpassN.ar(reverb, 0.050, [0.050.rand, 0.050.rand], 1) };

// add original sound to reverb and play it:
signal + (reverb * 0.2)
}.play
)

SuperCollider: an example of text-based programming for audio.

Graphical Programming

Pure Data, on the other hand, is a graphical programming environment. What this means is that the lines of
code, which describe the functions of a program and how they interact, have been replaced with visual objects
which can be manipulated on-screen. Users of Pure Data can create new programs (patches) by placing
functions (objects) on the screen. They can change the way these objects behave by sending them messages
and by connecting them together in different ways by drawing lines between them.

A Pure Data patch...

 Real Time Graphical Programming 2

This visual metaphor borrows much from the history of 20th Century electronic music, where sounds were
created and transformed by small electronic devices which were connected together via patch cables.

...and an analog synthesizer patch.

The sounds that were heard were the result of the types of devices the composer used and the way in which
she or he connected them together. Nowadays, much of this electronic hardware has been replaced by
computer software capable of making the same sounds, and many more.

Real Time

The real advantage of Pure Data is that it works in "real-time". That means that changes can be made in the
program even as it is running, and the user can see or hear the results immediately. This makes it a powerful
tool for artists who would like to make sound or video in a live performance situation.

Graphical Programming 3

What is digital audio?
Since we'll be using Pure Data to create sound, and since Pd treats sound as just another set of numbers, it
might be useful to review how digital audio works. We will return to these concepts in the audio tutorial later
on.

A diagram showing how sound travels through your computer. The "Analog to Digital" & "Digital to Analog
Conversion" is done by the soundcard. The "Digital System" in this case is Pure Data.
Source: http://en.wikipedia.org/wiki/Image:Analogue_Digital_Conversion.png

Frequency and Gain

First, imagine a loudspeaker. The move the air in front of it and make sound, the membrane of the speaker
must vibrate from it's center position (at rest) backwards and forwards. The number of times per second it
vibrates makes the frequency (the note, tone or pitch) of the sound you hear, and the distance it travels from
it's resting point determines the gain (the volume or loudness) of the sound. Normally, we measure frequency
in Hertz (Hz) and loudness or gain in Decibels (dB).

A microphone works in reverse - vibrations in the air cause its membrane to vibrate. The microphone turns
these acoustic vibrations into an electrical current. If you plug this microphone into your computer's
soundcard and start recording the soundcard makes thousands of measurements of this electric current per
second and records them as numbers.

Sampling Rate and Bit Depth

To make audio playable on a Compact Disc, the computer must make 44,100 measurements (called samples)
per second, and record each one as a 16-bit number. One bit is a piece of information which is either 0 or 1,

What is digital audio? 4

http://en.wikipedia.org/wiki/Image:Analogue_Digital_Conversion.png

and if there are 16 bits together to make one sample then there are 216 (or
2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2 = 65,536) possible values that each sample could have. Thus, we can
say that CD-quality audio has a sampling rate of 44,100 Hz and a bit-depth or word length of 16 bits. In
contrast, professional music recordings are usually made at 24-bit first to preserve the highest amount of detail
before being mixed down to 16-bit for CD, and older computer games were famous for having a distinctively
rough 8-bit sound. By increasing the sampling rate, we are able to record higher sonic frequencies, and by
increasing the bit-depth or word length we are able to use a greater dynamic range (the difference between
the quietest and the loudest sounds it is possible to record and play).

An example of 4-bit sampling of a signal (shown in red). This image shows that 16 possible values can be
made from 4-bits--a very low dynamic range indeed! In Pd, our scale of numbers goes from -1 to 1, with 0 in
the middle. Source: http://en.wikipedia.org/wiki/Image:Pcm.svg

The number we use to record each sample has a value between -1 and +1, which would represent the greatest
range of movement of our theoretical loudspeaker, with 0 representing the speaker at rest in the middle
position.

Graphical depiction of a sine wave, which crosses zero from the negative to the positive domain.

When we ask Pd to play back this sound, it will read the samples back and send them to the soundcard. The
soundcard then converts these numbers to an electrical current which causes the loudspeaker to vibrate the air
in front of it and make a sound we can hear.

Speed and Pitch Control

If we want to change the speed at which the sound is played, we can read the samples back faster or slower

Sampling Rate and Bit Depth 5

http://en.wikipedia.org/wiki/Image:Pcm.svg

than the original sampling rate. This is the same effect as changing the speed of record or a tape player. The
sound information is played back at a different speed, and so the pitch of the sound changes in relation to the
change in speed. A faster playback rate increases the pitch of the sound, while a slower playback rate lowers
the pitch.

Volume Control, Mixing and Clipping

If we want to change the volume of the sound, we have to multiply the numbers which represent the sound by
another number. Multiplying them by a number greater than 1 will make the sound louder, and multiplying
them by a number between 1 and zero will make the sound quieter. Multiplying them by zero will mute them
- resulting in no sound at all. We can also mix two or more sounds by adding the stream of numbers which
represent them together to get a new stream of sound. All of these operations can take place in real-time as the
sound is playing.

However, if the range of numbers which represents the sound becomes greater than -1 to 1, any numbers
outside of that range will be truncated (reduced to either -1 or 1) by the soundcard. The resulting sound will be
clipped (distorted). Some details of the sound will be lost and frequencies that were not present before will be
heard.

The waveform on the left is at full volume (i.e. it's peaks are at -1 and 1). The volume of the waveform on the
right has been doubled, so that it peaks at -2 and 2. The graph shows what would be heard from the
soundcard: a clipped signal with the peaks of the sinewave removed.

The Nyquist Number and Foldover/Aliasing

A similar problem occurs if one tries to play back a frequency which is greater then half the sampling rate
which the computer is using. Thus, if one is using a sampling rate of 44,100 Hz, the highest frequency one
could theoretically play back without errors is 22,050 Hz. This number which represents half the sampling
rate is called the Nyquist number.

If you were to tell Pd to play a frequency of 23,050 Hz, what you would hear is one tone at 23,050 Hz, and a
second tone at 21,050 Hz. The difference between the Nyquist number (22,050 Hz) and the synthesized sound
(23,050 Hz) is 1,000 Hz, which you would both add to and subtract from the Nyquist number to find the
actual frequencies heard. So as one increased the frequency of the sound over the Nyquist number, you would
hear one tone going up, and another coming down. This problem is referred to as foldover or aliasing.

Speed and Pitch Control 6

Here we can see two possible waveforms which could be described by the samples show. The red line shows
the intended waveform, and the blue line shows the "aliased" waveform at <Desired Frequency> - (<Desired
Frequency> - <Nyquist Number>).
Source: http://en.wikipedia.org/wiki/Image:AliasingSines.png

DC Offset

DC offset is caused when a waveform doesn't cross the zero line, or has unequal amounts of signal in the
positive and negative domains. This means that, in our model speaker, the membrane of the speaker does not
return to its resting point during each cycle. This can affect the dynamic range of the sound. While DC offset
can be useful for some kinds of synthesis, it is generally considered undesirable in an audio signal.

An example of DC offset: the waveform is only in the positive domain.

Block Size

Computers tend to process information in batches or chunks. In Pd, these are known as Blocks. One block
represents the number of audio samples which Pd will compute before giving output. The default block size in
Pd is 64, which means that every 64 samples, Pd makes every calculation needed on the sound and when all
these calculations are finished, then the patch will output sound. Because of this, a Pd patch cannot contain
any DSP loops, which are situations where the output of a patch is sent directly back to the input. In such a
situation, Pd would be waiting for the output of the patch to be calculated before it could give output! In other
words, an impossible situation. Pd can detect DSP loops, and will not compute audio when they are present.
For more information, see the "Troubleshooting" section.

It's All Just Numbers

The main thing to keep in mind when starting to learn Pure Data is that audio and everything else is just
numbers inside the computer, and that often the computer doesn't care whether the numbers you are playing
with represent text, image, sound or other data. This makes it possible to make incredible transformations in
sound and image, but it also allows for the possibility to make many mistakes, since there is no 'sanity checks'
in Pure Data to make sure you are asking the program to do something that is possible. So sometimes the
connections you make in Pd may cause your computer to freeze or the application to crash. To protect against
this save your work often and try not to let this bother you, because as you learn more and more about this
language you will make fewer and fewer mistakes and eventually you will be able to program patches which
are as stable and predictable as you want them to be.

The Nyquist Number and Foldover/Aliasing 7

http://en.wikipedia.org/wiki/Image:AliasingSines.png

It's All Just Numbers 8

Installing on OS X
Software name : Pd-extended
Homepage : http://puredata.info
Software version used for this installation: Pd-extended 0.39.3
Operating System use for this installation: Mac OS 10.4.11
Recommended Hardware : Any Mac running Mac OS X 10.4 or later

To begin the installation visit the download page for Pure Data (http://puredata.info/downloads) :

You can download either Miller Puckette's version of Pure Data, or Pd-extended. Miller's version of Pure Data
is called "Pd-vanilla" because it has just the basic minimum set of functionality. It does not contain any
external libraries or any of the features developed by the Pure Data community which are included in
Pd-extended. We will use Pd-extended for this manual, so chose your installer from the "Pd-extended" section
of this webpage.

Since there is not a "Universal Binary" for Pd-extended, you will want to select the Mac OS X installer that
best suits your computer. Use the one labelled "Mac OS X i386" for the newer, Intel-processor equipped Mac
computers. For example, any Mac Pro or MacBook is an Intel Mac. Any iMac that is less that a couple years
old is an Intel Mac.

Use the "Mac OS X PowerPC" installer if you have a PowerMac, PowerBook, or iBook with a G4 or G5
processor running Mac OS 10.4 "Tiger" or later. Older iMacs use G4 and G5 processors, so they use the
PowerPC version as well.

If your computer has a G3 processor or is running Mac OS X 10.3 Panther, then you will need to use older
version of Pd-extended, 0.39.3. You can see all of the older versions on the downloads page by clicking on .
There you can also find installers for versions of Mac OS X older than 10.3 Panther.

Installing on OS X 9

http://puredata.info/downloads
http://puredata.info/downloads

Once you've downloaded the right installer, you'll have a .dmg (Disk Image) on your harddrive.

Double click to open and mount it, and you will have a chance to read and accept the License Agreement.

Once you click "Agree", the Disk Image will mount and automatically open. Then simply drag the
Pd-extended.app to the provided shortcut to your Applications folder (or to another location of your choice.)
This will copy Pd-extended to your harddrive.

Installing on OS X 10

After that, make sure to check the "ReadMe" file for important installation information.

As indicated, the Pd-extended.app is setup by default to load most of the included external libraries. If you
want to change the libraries which are loaded at startup time, or any of the other startup settings, please notice
the instructions here in the "ReadMe", and be sure to read the chapter "Configuring Pure Data" in this
manual.

From here, you can open up your "Applications" folder in the Finder, and start Pd by clicking the
"Pd-extended.app" icon found there.

Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger

Pd-extended needs X11 for some graphics libraries. Starting with Mac OS X 10.5 Leopard, X11 comes
installed by default. If you are running Mac OS X older than 10.5 Leopard, then you will need install it
yourself, if you haven't already. It comes on your Mac OS X DVD or CD. If you no longer have that DVD or
CD, then you can find it online. The FAQ on puredata.info has the current links:
http://puredata.info/docs/faq/macosx

Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger 11

http://puredata.info/docs/faq/macosx

Insert your OS X Tiger Install Disc (#1). Scroll down to locate the Optional Installs icon and
double-click it

1.

Click Continue on the first screen2.

Read the Software License Agreement and then click Continue3.

Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger 12

Click Agree4.

Select a location and click Continue5.

Click the small triangle directly next to Applications and then place a check in the box labeled X11.
When youâ„�re ready, click Upgrade.

6.

Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger 13

Enter your password when prompted, and then click OK7.

Wait until it finishes installing...8.

After X11 has successfully installed, click Close9.

Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger 14

And that's it, X11 is installed10.

Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger 15

Installing on Windows
Software name : Pd-extended
Homepage : http://puredata.info
Software version used for this installation : Pd-extended 0.39-3
Operating System use for this installation : Microsoft Windows XP
Recommended Software : Windows 2000 or later
Recommended Hardware : 300 Mhz processor (CPU) minimum

To begin the installation visit the download page for Pure Data (http://puredata.info/downloads) :

You can download either Miller Puckette's version of Pure Data, or Pd-extended. Miller's version of Pure Data
is called "Pd-vanilla" because it has just the basic minimum set of functionality. It does not contain any
external libraries or any of the features developed by the Pure Data community which are included in
Pd-extended. We will use Pd-extended for this manual, so chose your installer from the "Pd-extended" section
of this webpage.

In the first group of links under "pd-extended'"click on the link marked "Microsoft Windows
(2000/XP/Vista)" and you should see something like this (this example using Firefox) :

Installing on Windows 16

http://puredata.info/downloads
http://puredata.info/downloads

Press "OK" and the download should proceed, leaving you (hopefully) with a dialog box that informs you the
download is complete. If you are using Firefox then the dialog may look something like this:

Now you can either browse your computer to look for the installer icon which will look something like this :

you can double click on this icon to start the installation process. Alternatively, you may wish to click Open in
the download dialog :

If you choose to do it this way then you may see the following window :

if you see this click "OK" and continue. Either of the steps above should put you in the same place, which is
this :

Installing on Windows 17

now press "Next >" and the installation process will begin. You will see this screen :

This is the standard license page. If you don't agree with the license you can't install the software. So, my
recommendation is - click on the green button next to 'I accept the agreement' and then press 'Next >'. You
will see the following :

Installing on Windows 18

The above assists you in deciding where to install Pd-extended. Unless you have a good reason to, leave the
default settings as they are. If you have a good reason, and know what you are doing, you can press 'Browse'
and choose another place to install Pd-extended on your computer. If you decide to change the defaults, or
keep them, youy must then press 'Next >' to continue :

The above screen is merely choosing what to call the installation in the Windows 'Start Menu', Just leave it as
it is and press 'Next >'.

Installing on Windows 19

You really don't want to uncheck the last two boxes as they are necessary for the installation. The first two
choices are merely cosmetic and effect the 'shortcut' icons. It doesn't matter if you check these or leave them
as they are. When you are ready press 'Next>'.

The above is the summary window. Press 'Install' and the installation will commence. It might take some time
depending on how quick your computer is. While you wait the installer will present you with progress bars :

Installing on Windows 20

Then when the installation is complete you will see a final screen :

If you click 'Finish' your browser will open the (rather unattractive) Read Me page :

Installing on Windows 21

It is rather uncompelling material but it does have one useful hint...

"To make sure that all of the included libraries are loaded when Pd runs, double-click C:\Program Files\pd\pd-settings.reg"

This is rather important, so you need to open the 'Program Files' in your file browser. Usually you can
right-click on the Windows Start Menu to open a file browser :

Then you will see something like this:

Installing on Windows 22

Double-click on 'Program Files' and the the directory called 'pd', in this window you should see a file called
'pd-settings':

Double-click on this file and you will see the following :

Press 'Yes' :

Installing on Windows 23

Then press 'OK' and that window will disappear. Now you probably want to actually open Pure Data. Click on
the Windows Start Menu and slide across to 'All Programs' and 'Pure Data', then finally again to the 'Pure
Data' icon :

Release the mouse button and Pure Data should open :

Installing on Windows 24

Installing on Windows 25

Installing on Ubuntu
Software name : Pure Data Extended
Homepage : http://puredata.info
Software version used for this installation : Pd-Extended 0.39-3
Operating System use for this installation : Ubuntu 8.04 (tested also on 7.10)
Recommended Hardware : 300 Mhz processor (CPU) minimum Â−

Installation on Ubuntu Gutsy (7.10) and Ubuntu Hardy (8.04) is the same process. It is made a little tricky
because Pure Data Extended requires some software that is not normally part of these operating systems but is
included in an older version of Ubuntu. So we must indulge a short work around to get Pure Data Extended
working correctly. Thankfully it is quick and simple.

Installing libflac7 and libjasper

Pure Data Extended requires two software 'libraries' from an older version of Ubuntu - libflac7 and libjasper

To prepare Ubuntu to install them when you install Pure Data Extended, you first need to open the Synaptic
Package Manager :

You will be asked for a password. Enter in your adminstrator password (not your user password) and you will
see Synaptic open.

 Installing on Ubuntu 26

http://puredata.info/downloads

Now we need to add the older software repositories too install these 2 software libraries. Click on Settings
and then Repositories and you will see the Synaptic Repository Manager :

Now click on the second tab entitled Third-Party Software. It is here that you will now need to enter
information about these two repositories:

deb http://archive.ubuntu.com/ubuntu/ feisty main restricted
deb-src http://archive.ubuntu.com/ubuntu/ feisty main restricted

Installing libflac7 and libjasper 27

You need to add them one at a time by clicking on + Add and typing one of the above lines into the text field
provided and then press Add Source. Then do the same for the next line.

Now close the repository manager window and you will be asked to reload the repository information because
it has changed. This can be done by pushing the blue Reload button on the Synaptic interface. Then quit the
Synaptic Package Manager.

Installing Pure Data

Now download the Pure Data Extended package. Visit the download page (http://puredata.info/downloads) :

You can download either Miller Puckette's version of Pure Data, or Pure Data Extended. Miller's version of
Pure Data is called "pd-vanilla" because it does not contain any external libraries or any of the features
developed by the Pure Data community which are included in Pure Data Extended. We will use Pure Data
Extended for this manual, so chose your installer from the "pd-extended" section of this webpage.

In the very first section click on the link "Debian and Ubuntu (intel i386 processor)", this will forward you to
a download page. Don't do anything else, the download should start automatically. When the file has
downloaded browse to the files and right click on it and choose 'Open with "GDebi Package Installer"'

 Installing Pure Data 28

http://puredata.info/downloads

The package installer will open :

Now press Install Package - you will be asked to enter your password, and then Pure Data Extended will be
installed. When the process is finished close GDebi and open Pure Data Extended:

 Installing Pure Data 29

Now it is important to open the Synaptic Package Manager again and disable the two new repositories so they
don't cause issues with future software installations.

 Installing Pure Data 30

Installing on Debian
Software name : Pure Data Extended
Homepage : http://puredata.info
Software version used for this installation : Pd-Extended 0.39-3
Operating System use for this installation : Debian Linux (4.0 rc3 stable)
Recommended Hardware : 300 Mhz processor (CPU) minimum

To install Pure Data Extended, first visit the download page (http://puredata.info/downloads) :

In the very first section click on the link "Debian and Ubuntu (intel i386 processor)", this will forward you to
a download page. Don't do anything else, the download should start automatically. If you used the default
Debian web browser (Ice Weasel) you will see the following :

Installing on Debian 31

http://puredata.info/downloads
http://puredata.info/downloads

Don't use the archive manager, instead choose 'Save to Disk' and press 'OK'. When your file has downloaded
you must browse to it. The default download location is the Desktop, on my Desktop I see this :

Right-click on this icon and choose 'Open with "GDebi Package Installer"':

This will show something like this :

This is the general package (software) installer for Debian. Just click "Install Package" and you will be asked
for the administrator ('root') password for your computer :

Installing on Debian 32

Enter the password and the installation process will start :

When the process has completed just open a terminal :

Type in the terminal 'pd' and press return :

Installing on Debian 33

and now Pure Data should appear :

Installing on Debian 34

Configuring Pure Data
Pd-Extended has done a lot to make installing and setting up Pure Data easier than ever before. But every
computer system is different, and each Pd user will have different needs. This section shows how to configure
the most basic parts of Pd, including the soundcard and MIDI devices, as well as some advanced
configuration options for those wishing to customize their installation.

Basic configuration

The first thing we'll want to do once Pd is running is make sure that the audio is configured correctly. This
includes choosing the correct drivers, the correct soundcard and the proper latency for your system to be both
responsive and glitch-free. Also, if you have any MIDI devices (such as keyboards or fader boxes), you can
set Pd up to use those as well. After that, you can test the audio and MIDI to make sure it is working properly.

Audio drivers

Pd can use a variety of audio drivers to connect to the soundcard. So our first step is to chose the correct ones.
This can be done via the "Media" menu:

OSX : Media -> portaudio/jack
Linux : Media -> OSS/ALSA/jack
Windows : Media -> ASIO (via portaudio)

This part of the menu should list the available audio drivers on your system, and allow you to switch between
them. The drivers you have depend on your operating system, and what drivers you have installed on that
operating system. Keep in mind you may not have all of these installed on your computer:

Linux

 OSS•
 ALSA•
 jack•

OS X

 portaudio•
 jack•

Windows

 Configuring Pure Data 35

 MMIO•
 ASIO•

Linux users are encouraged to investigate JACK (Jack Audio Connection Kit), an audio server which
allows different audio applications to be connected with virtual "cables" in your computer. JACK, and it's
Graphical User Interface QJackctl, should be available from whatever Linux distribution you happen to be
running.

Many OS X users have also reported that audio runs smoother and with less CPU load when using JackOSX,
an implementation of the JACK server and user interface for the Mac OS. JackOSX can be found at
http://jackosx.com/

And Windows users may find configuring their ASIO soundcards much easier by using ASIO4ALL, which
can be downloaded from http://www.asio4all.com/

MIDI drivers (Linux only)

Linux : Media -> default-MIDI/ALSA-MIDI

This menu which allows you to switch between the built-in Pd MIDI drivers and the ALSA MIDI drivers, if
they are installed. If the ALSA MIDI drivers are used, then JACK users can use the QJackctl application
(available in most Linux distributions) to connect external MIDI devices and other MIDI applications running
on the same computer to Pd.

Audio Settings

OSX : Pd-extended -> Preferences -> Audio Settings
Linux & Windows : Media -> Audio Settings

This is one of the most important configuration menus in Pd. Here you can change the sample rate, delay,
input and output devices as well as the number of channels they use.

Sample rate

The sampling rate for CD quality audio is 44,100 Hz. Most computer soundcards run at this
sampling rate, or at 48,000 Hz, by default. Choose the rate that matches the rate of your
soundcard or audio drivers here.

Delay (msec)

Your computer needs a certain amount of time to process all the information coming out of
Pd and send it to the soundcard for playback. Likewise, when you are recording, Pd needs a
certain amount of time to gather all the information coming from the soundcard. The term for
this delay is called latency, and it measures the amount of time between the moment when
you tell Pd to do something (for example by playing a note on a keyboard), and when you
hear the result of that action. A shorter latency means you will hear the results quicker, giving

Audio drivers 36

http://jackosx.com/
http://www.asio4all.com/

the impression of a more responsive system which musicians tend to appreciate. However,
with a shorter latency you run a greater risk of getting an interruption or 'glitch' in the audio.
This is because the computer does not have enough time to "think about" the sound before
sending it to the soundcard. A longer latency means less chances of glitches, but at the cost of
a slower response time. It is up to you to find the best balance for your own needs, but the
default latency in Pd is 50 milliseconds. You can increase or decrease the latency of Pd by
entering a value in milliseconds in this box.

Input Device

Choose the soundcard you wish to use with Pd and the number of channels you want to use.
In the case of a normal, stereo soundcard you would enter the number 2. For a multichannel
soundcard, you may choose some or all of the channels. Make sure this is checked if you
would like to record sound into Pd.

Output Device

Choose the same soundcard as you selected for the Input Device, and a matching number of
channels as you selected for the Input Device as well. Although it may be possible to use
different soundcards and unmatched numbers of channels for input and output on some
systems, this can also cause problems for Pd, so experiment first. Make sure the checkbox
next to the device is checked.

MIDI Settings

OSX : Pd -extended -> Preferences -> MIDI Settings
Linux & Windows : Media -> MIDI Settings

On Linux, you have a choice of using the built-in MIDI drivers, or the ALSA-MIDI drivers if they are
installed. If you are using the built-in drivers, you should be able to choose which devices to Pd will send and
receive MIDI messages with. You may also select "use multiple devices" if you have several applications or
devices using MIDI. This method is rather complex, because you must set up the devices by number using
your startup flags and you will not be able to change them while Pd is running. Using the ALSA-MIDI drivers
is easier to manage, and therefore recommended.

When using the ALSA MIDI drivers on Linux, you can tell Pd the number of In and Out Ports to use here.
These are connections which other MIDI applications or devices can use to connect to and from Pd. To
connect devices or applications, you can use ALSA MIDI with the JACK audio drivers and the Qjackctl if
you have them installed. In Qjackctl, you will see a tab for MIDI, and be able to connect the inputs and
outputs of MIDI devices and applications by clicking on them.

On Mac OS X, to use MIDI you must first open the "Audio MIDI Setup.app", which is located in your
Applications/Utilities folder. Once this application is open, and you have connected your external MIDI
devices (if any), you should be able to see your MIDI devices in this window. Minimize the "Audio MIDI
Setup.app" and return to Pd and this "MIDI Settings" menu. Now you will be able to choose which devices
with which Pd will send and receive MIDI messages. You may also select "use multiple devices" if you have

Delay (msec) 37

several applications or devices using MIDI.

Test Audio and MIDI

OSX, Linux & Windows : Media -> Test Audio and MIDI

To make sure that you've configured your audio and MIDI correctly, Pd includes a patch to test your setup. If
you open "Test Audio and MIDI", you will see this window:

First, click one of the radio buttons marked either "-20" or "-40" under "TEST SIGNAL". If your audio is set
up correctly, you will hear a test tone and you will see some of the number boxes above "AUDIO INPUT"
changing to measure any incoming audio signal from the line in or microphone of your computer. If you have
any external MIDI devices or a piece of MIDI software connected to Pd, you can test the connection by
sending MIDI data to Pd and watching to see if the number boxes connected to [notein] and [ctlin] change.

MIDI Settings 38

Advanced configuration
Since Pd-Extended is installed with most of the settings, search paths and external libraries already
configured, many users won't have to worry about configuring these parts of Pure Data at all. Advanced users,
however, may be interested in customizing these settings. The settings which can be changed in Pure Data are
the same as those available when starting from the command line:

audio configuration flags:
 -r <n> -- specify sample rate
 -audioindev ... -- audio in devices; e.g., "1,3" for first and third
 -audiooutdev ... -- audio out devices (same)
 -audiodev ... -- specify input and output together
 -inchannels ... -- audio input channels (by device, like "2" or "16,8")
 -outchannels ... -- number of audio out channels (same)
 -channels ... -- specify both input and output channels
 -audiobuf <n> -- specify size of audio buffer in msec
 -blocksize <n> -- specify audio I/O block size in sample frames
 -sleepgrain <n> -- specify number of milliseconds to sleep when idle
 -nodac -- suppress audio output
 -noadc -- suppress audio input
 -noaudio -- suppress audio input and output (-nosound is synonym)
 -listdev -- list audio and MIDI devices
 -oss -- use OSS audio API
 -32bit ----- allow 32 bit OSS audio (for RME Hammerfall)
 -alsa -- use ALSA audio API
 -alsaadd <name> -- add an ALSA device name to list
 -jack -- use JACK audio API
 -pa -- use Portaudio API
 -asio -- use ASIO drivers and API
 -mmio -- use MMIO drivers and API
MIDI configuration flags:
 -midiindev ... -- midi in device list; e.g., "1,3" for first and third
 -midioutdev ... -- midi out device list, same format
 -mididev ... -- specify -midioutdev and -midiindev together
 -nomidiin -- suppress MIDI input
 -nomidiout -- suppress MIDI output
 -nomidi -- suppress MIDI input and output
 -alsamidi -- use ALSA midi API
other flags:
 -path <path> -- add to file search path
 -nostdpath -- don't search standard ("extra") directory
 -stdpath -- search standard directory (true by default)
 -helppath <path> -- add to help file search path
 -open <file> -- open file(s) on startup
 -lib <file> -- load object library(s)
 -font-size <n> -- specify default font size in points
 -font-face <name> -- specify default font
 -font-weight <name>-- specify default font weight (normal or bold)
 -verbose -- extra printout on startup and when searching for files
 -version -- don't run Pd; just print out which version it is
 -d <n> -- specify debug level
 -noloadbang -- suppress all loadbangs
 -stderr -- send printout to standard error instead of GUI
 -nogui -- suppress starting the GUI
 -guiport <n> -- connect to pre-existing GUI over port <n>
 -guicmd "cmd..." -- start alternatve GUI program (e.g., remote via ssh)
 -send "msg..." -- send a message at startup, after patches are loaded
 -noprefs -- suppress loading preferences on startup
 -rt or -realtime -- use real-time priority
 -nrt -- don't use real-time priority
 -nosleep -- spin, don't sleep (may lower latency on multi-CPUs)

All of the Audio and MIDI configuration flags in this list are set using the menus described above. Note that
not all settings are available on all platforms (for example, there are no -asio or -mme options on Mac OS X or

Advanced configuration 39

Linux, nor the -alsa, -oss, -pa or -jack settings on Windows, etc...)

The next most-important configuration options have to do with the external libraries which Pd loads at startup
time (and thus which objects you will be able to use), as well as the locations in your file system where Pd can
search for these externals and for other resources the program uses to run.

Pure Data uses a system called pdsettings to store all these options and use them every time Pd starts up. The
pdettings can be configured through various menus in the application, as we saw with the audio and MIDI
settings. But they can also be configured by other tools, which are specific to each operating system.

We'll start by looking at the built-in menus for Startup and Path, and then we'll look at other methods to
change the configuration options.

Startup Flags

OSX : Pd-extended -> Preferences -> Startup
Linux & Windows : File -> Startup

The things we want to pay attention to in this menu are the externals we load, which are listed as "Pd binaries
to load (on next startup)", and whether or not we "defeat real-time scheduling".

Under "Pd binaries to load", you can make a list of the external libraries which you have installed on your
system which you would like to be available in Pd. You will then be able to run these externals the next time
you start Pd. Because you are using the Pd-extended distribution, this section should be completed for you
with a list of the externals which come with the distribution.

If you would like to add more libraries to the ones listed, the simplest way is to add them to an existing line of
the Startup menu, like so:

Gem:my_new_lib

And then click "Save all settings" and "OK". However, Pd-Extended is still a program which is under
development, and this method has been noted to have some problems lately, so you may wish to try the
Platform-Specific Configuration Tools below.

If you are running Pd on Linux, you may want to experiment with using "real-time scheduling" to improve the
audio quality by allowing Pd faster access to the soundcard. On some systems, however, you must run Pd as
the administrator of the system (i.e. "root" or "su") to have permission to do this. To use "real-time

 Startup Flags 40

scheduling", enter the following in your "startup flags"

 -rt

But keep in mind that if Pd overloads or locks up your system by using too much of the processer's resources,
it can be very difficult to quit the program when using "real-time scheduling".

Users on Mac OS X should not use the "real-time scheduling" flag, and should click the box which says
"defeat real-time scheduling" for better audio quality.

Path

OSX : Pd-extended -> Preferences -> Path
Linux & Windows : File -> Path

Shown here is the Mac OS X menu for setting the Paths. These are the Search Paths that Pd will use to locate
external libraries, help patches, and other any patches, fonts, soundfiles, videos ar anything else which you
may need while working in the program. If you would like to add more directories to the ones listed, the
simplest way is to add them to an existing line of the Path menu, like this:

/Library/Pd:/home/my_name/my_new_path

And then click "Save all settings" and "OK". However, as with the Startup menu, some people have had
problems using this method, so you may wish to try the Platform-Specific Configuration Tools below.

Quite a bit of this configuration has been taken care of by Pd-Extended already, so let's look at some
real-world examples of when you might want to add a path. One situation would be if you want to use an
audio file or a collection of audio files in your patch, but you don't want to have to specify the whole location
every time it's needed in any object or message.

So, instead of typing

/home/beaver/my_soundfiles/spoken/boy/geewhiz.wav

Path 41

or

/home/beaver/my_soundfiles/spoken/girl/golly.wav

you could add

/home/beaver/my_soundfiles/spoken

to your Path, and then call these soundfiles by typing:

boy/geewhiz.wav
girl/golly.wav

Another very common situation is when you would like to use a Pd patch you have saved as an abstraction
(which essentially treats the saved patch like another Pd object) inside another Pd patch. In this case, you must
either have the patch you wish to use as an abstraction saved in the folder as the "parent" patch you wish use it
in, or you must add the folder containing the abstraction to your Path. For example the path:

/home/pdfreek/puredata/abstractions/reverb_tools

might contain various kinds of reverb abstractions that the user "pdfreek" created to be reused in other
patches. For more information about abstractions, please see the DataFlow Tutorials chapter.

Finally, if you want to compile your own external Pd libraries, or use ones which you have downloaded from
the internet, then you need to place the binary files (which end in .pd_linux for Linux, .pd_darwin for OS X
and .dll for Windows) in a folder and add that folder to your path, such as:

~/pd/extra

where ~/ means your home directory (i.e. /home/"username" on Linux and /User/"username" on Mac OS X).
Please note that in the case of name clashes (where two objects or files have the same name), the one which is
loaded last takes precedence over all others. An example of this is the object [counter], which exists in several
external libraries, and which has a different function in each one!

Platform-Specific Configuration Tools

The locations for the pdsettings files in Pd are:

OS X: ~/Library/Preferences/org.puredata.pd.plist (~ means your home folder)
Windows: HKEY_LOCAL_MACHINE -> SOFTWARE -> Pd (using REGEDIT.EXE/REGEDIT32.EXE)
Linux: ~/.pdsettings (~ means your home folder)

Linux

Linux users may edit the file directly via command line applications such as joe, vim, pico or nano, or with
whatever other text editing application comes with your distribution:

$ nano /home/derek/.pdsettings

GNU nano 1.2.4 File: /home/derek/.pdsettings

audioapi: 5
noaudioin: False
audioindev1: 0 4
noaudioout: False
audiooutdev1: 0 4
audiobuf: 50

Platform-Specific Configuration Tools 42

rate: 44100
nomidiin: False
midiindev1: 0
nomidiout: False
midioutdev1: 0
path1: /home/derek/pd/rradical/memento
path2: /home/derek/pd/ix_toxy
path3: /home/derek/pd/berlin
path4: /home/derek/pd/rradical/memento/tutorial
path5: /home/derek/workshop_patches
path6: /usr/local/lib/pd/doc/5.reference
path7: /usr/local/lib/pd/extra/xjimmies
npath: 7
standardpath: 1
verbose: 0
loadlib1: pool
loadlib2: iemlib1
loadlib3: iemlib2
loadlib4: iem_mp3
loadlib5: iem_t3_lib
loadlib6: OSC
loadlib7: zexy
nloadlib: 7
defeatrt: 0
flags: -alsamidi -rt

 [Read 31 lines]
^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos
^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Txt ^T To Spell

Remember that if you add a new path or loadlib, then you will need to give it a number higher than the last
existing one, and you will need to change the npath or nloadlib to the number of new paths or loadlibs you
have added. In the above pdsettings, to add the loadlib pdp, you would have to add/change the following:

loadlib8: pdp
nloadlib: 8

OS X

OS X users may wish to try using the Property List Editor.app, which can be installed from the XCode
Tools or Server Tools CDs available for free from Apple:

http://developer.apple.com/tools/xcode/

Here is the Property List Editor, with the org.puredata.pd.plist file open:

Linux 43

http://developer.apple.com/tools/xcode/

You can click directly in the Value field to change a value, or use the New Sibling button to add a new line.

The command line utility defaults can also be used. The following line in the terminal lists all the pdsettings
in org.puredata.pd.plist:

defaults read org.puredata.pd

The following command can be used to write a new line to pdsettings:

defaults write org.puredata.pd loadlib30 test

and this command can be used to delete one line from pdsettings:

defaults delete org.puredata.pd loadlib30

In this case, loadlib30 represents the next possible line that could be added to load a library (29 libraries are
loaded already), and test represents a hypothetical library which we add to the startup in the first case using
the write command, and remove from the startup in the second case by using the delete command. For more
information about defaults, type:

 defaults --help

Windows

Windows users may also use the REGEDIT program to edit their pdsettings. This program comes with the
Windows operating system, and can be located under the name REGEDIT.EXE or REGEDT32.EXE
(Windows XP or newer). Please note: manually editing the Windows Registry files using a text editor instead
of REGEDIT is generally considered unsafe, since errors here can disrupt the entire operating system! Those
interested in more details about the Registry should read:

http://en.wikipedia.org/wiki/Windows_Registry#Editing

OS X 44

http://en.wikipedia.org/wiki/Windows_Registry#Editing

Windows 45

Starting Pure Data
Now that you have Pd-Extended installed on your computer and configured, let's look at different ways to
start it--from simply clicking an icon through starting from the command line and adding different startup
flags or using a script to save different sets of startup information.

Starting via an icon

There are two ways of starting Pure Data. The way that will be used most commonly on Windows or Mac OS
X will be to click on the icon which the installer put in your "My Programs" or "Applications" folder. On
Windows, this is "Start -> Pure Data -> Pure Data".

On Linux, your system may also have a menu bar, such as "Programs/Multimedia" or "Programs/Sound"
where Pd can be started by clicking the menu item.

Starting via command line

The other way is to open Pd from the terminal or shell via a command line. This is most often done on Linux,
but it can be done this way on any platform. To do this, one must know the location of the Pd application on
his/her system, which can be different depending on where Pd was installed.

Linux (from xterm)

/usr/local/bin/pd

Mac OSX (from Terminal.app)

/Applications/Pd-extended.app/Contents/Resources/bin/pd

Windows (from the DOS shell or Command Prompt)

C:\Program Files\pd\bin\pd.exe

Why would we want to open Pd by command line? The most common reason would be is if we wanted to use
a different set of flags than the default ones. For example, if you were using Pd in a live performance, and you
wanted it to open up the same patch whenever you started it in this situation, you might use the command:

/usr/local/bin/pd -open /home/pdfreek/liveset.pd

 Starting Pure Data 46

Which would start Pd and open the patch liveset.pd. You could also add other startup flags, such as which
soundcard and drivers to use, which external libraries to load or which search paths to add. Flags are
additional pieces of information which can alter the configuration of Pd for that particular startup, rather than
the pdsettings which we looked at in the ConfiguringPd chapter, which affect the program every time it
starts.

Like almost any program launched by command line, you can add the flag "--help" to see a long list of
configuration options, which gives you some idea of the different possibilities for starting up Pd:

 $ /Applications/Pd-0.39.2-extended-test4.app/Contents/Resources/bin/pd --help
 usage: pd [-flags] [file]...
 audio configuration flags:
 -r <n> -- specify sample rate
 -audioindev ... -- audio in devices; e.g., "1,3" for first and third
 -audiooutdev ... -- audio out devices (same)
 -audiodev ... -- specify input and output together
 -inchannels ... -- audio input channels (by device, like "2" or "16,8")
 -outchannels ... -- number of audio out channels (same)
 -channels ... -- specify both input and output channels
 -audiobuf <n> -- specify size of audio buffer in msec
 -blocksize <n> -- specify audio I/O block size in sample frames
 -sleepgrain <n> -- specify number of milliseconds to sleep when idle
 -nodac -- suppress audio output
 -noadc -- suppress audio input
 -noaudio -- suppress audio input and output (-nosound is synonym)
 -listdev -- list audio and MIDI devices
 -jack -- use JACK audio API
 -pa -- use Portaudio API
 (default audio API for this platform: portaudio)
 MIDI configuration flags:
 -midiindev ... -- midi in device list; e.g., "1,3" for first and third
 -midioutdev ... -- midi out device list, same format
 -mididev ... -- specify -midioutdev and -midiindev together
 -nomidiin -- suppress MIDI input
 -nomidiout -- suppress MIDI output
 -nomidi -- suppress MIDI input and output
 other flags:
 -path <path> -- add to file search path
 -nostdpath -- don't search standard ("extra") directory
 -stdpath -- search standard directory (true by default)
 -helppath <path> -- add to help file search path
 -open <file> -- open file(s) on startup
 -lib <file> -- load object library(s)
 -font <n> -- specify default font size in points
 -typeface <name> -- specify default font (default: courier)
 -verbose -- extra printout on startup and when searching for files
 -version -- don't run Pd; just print out which version it is
 -d <n> -- specify debug level
 -noloadbang -- suppress all loadbangs
 -stderr -- send printout to standard error instead of GUI
 -nogui -- suppress starting the GUI
 -guiport <n> -- connect to pre-existing GUI over port <n>
 -guicmd "cmd..." -- start alternatve GUI program (e.g., remote via ssh)
 -send "msg..." -- send a message at startup, after patches are loaded
 -rt or -realtime -- use real-time priority
 -nrt -- don't use real-time priority

To learn more about Pd's startup options, please see the Configuring Pd chapter.

Starting from a script

Once you have created a command line for your specific situation, you can save that command as a script,
which is a short file containing a list of commands, which can be run by typing its name in the terminal or

Windows (from the DOS shell or Command Prompt) 47

shell. The exact format of your script depends on which operating system you use.

Windows

Windows uses the DOS language for its commands, so we must create a .bat (DOS batch) file containing the
location of the Pd program and the startup flags we want to use. Using a simple text editor, make a file named
"pdstart.bat", and place the following in it, for example

"c:\pd\bin\pd.exe" -font 10 -path "c:\pd\doc\vasp" -lib cyclone -lib iem_t3_lib -lib iem_mp3 -lib mjLib -lib OSC -lib percolate -lib vasp -lib xeq -lib xsample -lib zexy -lib iemlib1 -lib iemlib2 -listdev %1 %2 %3 %4 %5 %6 %7 %8 %9

Though it may appear to be many lines, this command must in fact be one long line with no breaks. If the
version of Windows you are running has a "Save as type" option, choose the type "All files" to prevent your
.bat file from being saved as a text file. Once this is saved, you can double-click on the file to run it.

Linux and OS X

Since both Linux and OS X use the same Unix-type system to interpret and run command lines, the process
for creating a script is the same for both. In your favorite text editor, create a new file and start it with the line:

#! /bin/bash

which tells the operating system that what it is reading is a script, and that it will use the bash command line
interpreter. On the line below that, copy this or a similar line:

/usr/local/lib/pd -font 10 -path /home/pdfreek/pd/my_abstractions -lib cyclone -lib iem_t3_lib -lib iem_mp3 -lib mjLib -lib OSC -lib percolate -lib vasp -lib xeq -lib xsample -lib zexy -lib iemlib1 -lib iemlib2 -open /home/pdfreek/pd/liveset3.pd

This should be all in one line, with no breaks. Please note that you should give it the correct path to the Pd
program in the beginning (which could be different if you are running OS X for example), and you should
replace the example flags with ones of your own.

Once you have written and saved this file with the .sh (shell script) file extension, such as "start_pd.sh", you
must make it executable as a script with the following command:

chmod +x start_pd.sh

After you have done this, you can start this script, which will run Pd with all the flags you have added to it, by
typing:

sh start_pd.sh

Some Linux window managers such as KDE or Gnome may support double-clicking to start shell scripts
either by default or by selecting the default application. On OS X, you could configure the Finder to open .sh
files with the Terminal.app by default (but then you would have to manually chose to open them with
TextEdit.app for editing later on).

Advanced scripting for starting Pd

One of the beautiful things about the Unix system, which both Linux and OS X are based on, is that it is
designed to allow many applications to communicate with each other and work together. This means that shell
scripts can be constructed to do an enormous amount of tasks.

For example, the following script for Linux starts the JACK audio server (with some flags of its own), opens
the Qjackctl interface for JACK and then starts Pd with the -jack flag and the -open flag listing two specific
files:

Starting from a script 48

#! /bin/bash

jackd -d alsa -d hw -r 44100 -p 1024 -s &
/usr/bin/qjackctl & sleep 5 ; /usr/local/bin/pd -jack -open /home/derek/pd/delnet/delaynet.pd:/home/derek/pd/echoplex_footswitches/midiswitches.pd

The ampersand (&) between the commands means that the command preceeding it will be run in the
background. In other words, the previosu command will keep running while we execute the next ones, instead
of quitting. The section "sleep 5" tells the shell to wait 5 seconds before running the next command, in this
case in order to give JACK time to start up. The semicolon (;) is used to seperate jobs, meaning that the next
command won't be run until the previous one is finished (in the case of "sleep 5") or sent to the background
(in the case of the ampersand symbol).

This script could be expanded to open other applications (in the following case, the looping application
SooperLooper), use the aconnect application to make ALSA MIDI connections from Pd to SooperLooper,
and use the jack_connect command to make audio connections between Pd, SooperLooper and 6 channels of
a sound card via the JACK audio server:

#! /bin/bash

jackd -d alsa -d hw -r 44100 -p 1024 -s &
/usr/bin/qjackctl & sleep 5 ; /usr/local/bin/pd -jack -open /home/derek/pd/delnet/delaynet.pd:/home/derek/pd/echoplex_footswitches/midiswitches.pd & sleep 5 ; /usr/local/bin/sooperlooper -L /home/derek/pd/echoplex_footswitches/3loops.slsess -m /home/derek/pd/echoplex_footswitches/3loops.slb & sleep 5 ; /usr/local/bin/slgui & sleep 5 ; aconnect 'Pure Data':1 'sooperlooper_1':0 ; jack_connect alsa_pcm:capture_1 sooperlooper_1:common_in_1 ; jack_connect alsa_pcm:capture_2 sooperlooper_1:common_in_2 ; jack_disconnect alsa_pcm:capture_1 pure_data_0:input0 ; jack_disconnect alsa_pcm:capture_2 pure_data_0:input1 ; jack_disconnect alsa_pcm:capture_3 pure_data_0:input2 ; jack_disconnect alsa_pcm:capture_4 pure_data_0:input3 ; jack_connect alsa_pcm:capture_3 pure_data_0:input0 ; jack_disconnect pure_data_0:output0 alsa_pcm:playback_1 ; jack_disconnect pure_data_0:output1 alsa_pcm:playback_2 ; jack_disconnect pure_data_0:output2 alsa_pcm:playback_3 ; jack_disconnect pure_data_0:output3 alsa_pcm:playback_4 ; jack_connect pure_data_0:output0 alsa_pcm:playback_7 ; jack_connect pure_data_0:output1 alsa_pcm:playback_8 ; jack_connect sooperlooper_1:loop0_out_1 alsa_pcm:playback_1 ; jack_connect sooperlooper_1:loop0_out_2 alsa_pcm:playback_2 ; jack_connect sooperlooper_1:loop1_out_1 alsa_pcm:playback_3 ; jack_connect sooperlooper_1:loop1_out_2 alsa_pcm:playback_4 ; jack_connect sooperlooper_1:loop2_out_1 alsa_pcm:playback_5 ; jack_connect sooperlooper_1:loop2_out_2 alsa_pcm:playback_6

Detailed syntax for aconnect and jack_connect can be found by typing:

aconnect --help

or

jack_connect --help

Bash shell scripting is a huge area to investigate, curious readers are encouraged to check out one of the many
websites and books detailing the Bash environment.

Advanced scripting for starting Pd 49

The Interface
Now that we have Pd configured and your audio and MIDI are working, let's have a look at the rest of the
main Pd window.

As of Pd 0.39, all of the messages that Pd produces are sent to the main Pd window (before this, they were
sent to the shell which was running Pd). When you start Pd, this main Pd window should tell you important
information, such as the externals you are loading and whether any errors occurred while loading them, as
well as any errors connecting to the soundcard. Later, you will also use this main Pd window to see
information about the patch you are working on, as well as for debugging (correcting errors in your patch). So
keep this window in a place where you can find it on your screen.

There are a few other important features about this main Pd window. It has audio level indicators, so you can
can a general idea of the loudness of the sound that you are sending to the soundcard. If this level goes to 100
or higher, you are sending to high a level and you will hear a distorted sound. The boxes marked "Clip" will
also flash red. To use the audio level meters, check the box that says "peak meters" in the main Pd window.

There is also a box marked "compute audio", which you can use to turn on and off audio processing. When
you open the "Test Audio and MIDI" patch, Pd will automatically turn audio processing on for you.

Last is a box marked "DIO". This stands for Digital In Out errors, and this box should flash red when Pd has
difficulties sending data to your sound card. If you click this box, Pd will print a list of times when these DIO
errors occurred in the main Pd window.

The last thing to pay attention to is the "Help" menu. Under this drop-down menu, you can open the official
Pd manual, written by Miller S. Puckette in "HTML" format, which can be viewed in your web browser. You
can also open a file "Browser", which will list the built-in help patches which come with Pd. All of these
documents are valuable resources, however many newcomers to Pd can find them confusing. We will cover
some of these basics in the "Dataflow", "Audio" and "Patching Strategies" tutorials in this manual, after which
you can return to the built-in help files with a bit better understanding.

 The Interface 50

Starting a new Patch

Under the "File" menu in the main Pd window, create a "New" Pd patch. It should look something like this:

Unlike other software for creating audio or video media, such as Ableton Live, CuBase or Final Cut Pro,
where a new file shows you a variety of buttons, menus and timelines, Pd gives you a blank, white space.
Within that white space, you can make a synthesizer or video mixer, translate sensor input into the movements
of a robot or stream movies to the internet, for example. The difference between Pd and software like Live is
that it doesn't start with any preconceived ideas about how to make your artwork. Where Live provides you
with a set of tools suited primarily for the production of loop-driven dance music, Pd acts more like a text
editor where anything is possible, so long as you know how to write it. It is this kind of possibility and
freedom that attracts many artists to using Pd.

To explore these possibilities, you must understand Pd as being a written language like German or Chinese.
As in any language, Pd has a vocabulary (the words used in the language) and a grammar (the way to put
these words together so that they make sense). And like learning any language, you first have to learn how to
say simple things like "What is your name?" before you can write poetry! So let's start simple.

You will notice that once we have opened a new Pd patch, there are a few new menu items to choose from.
The "Edit" menu has all the kinds of functions you would expect from a text editor like Notepad, TextEdit,
OpenOffice or Word, such as "Cut", "Paste", "Duplicate", "Select All", etc etc.

Starting a new Patch 51

There is also a "Put" menu, containing a list of the kinds of things you will be putting in your patch, such as
"Object", "Message", "Number", "Symbol", "Comment" and a range of GUI (Graphical User Interface)
elements such as "Bang", "Toggle", "Slider", etc.

Interface differences in Pure Data

While the main functionality of Pure Data doesn't change between operating systems, the locations and
contents of some of the menus do. Depending on the system you are running, you will be able to do the
following:

Linux

From the "File" menu, you can:

Create a "New" Pd patch1.
"Open" a Pd patch which is saved on your computer 2.
Send a "Message" to the running Pd application 3.
Set the search "Path" which Pd uses 4.
Change the "Startup" flags which Pd uses 5.
"Quit" Pd6.

From the "Find" menu, you can:

"Find last error" which occurred in the program1.

From the "Windows" menu, you can:

Change between the different open Pd patches1.

From the "Media" menu, you can:

Turn audio "ON" and "OFF"1.
Change between the different available audio drivers 2.
Change between the different available MIDI drivers 3.
Change the "Audio Settings" 4.
Change the "MIDI Settings" 5.
"Test Audio and MIDI" 6.
View the CPU "Load Meter"7.

And from the "Help" menu, you can:

Read information "About Pd"1.
Open a "Browser" to see some help patches which are included in Pd2.

Mac OS X

From the "Pd" menu (which should contain the version number as well), you can:

Read information "About Pd"1.
Change the following "Preferences":2.

Set the search "Path" which Pd uses1.
Change the "Startup" flags which Pd uses 2.
Change the "Audio Settings" 3.

Interface differences in Pure Data 52

Change the "MIDI Settings" 4.
Quit" Pd3.

From the "File" menu, you can:

Create a "New" Pd patch1.
"Open" a Pd patch which is saved on your computer 2.
Send a "Message" to the running Pd application 3.
"Quit" Pd4.

From the "Find" menu, you can:

"Find last error" which occurred in the program1.

From the "Media" menu, you can:

Turn audio "ON" and "OFF"1.
Change the "Audio Settings" 2.
Change the "MIDI Settings" 3.
"Test Audio and MIDI" 4.
View the CPU "Load Meter5.

From the "Windows" menu, you can:

Change between the different open Pd patches1.

And from the "Help" menu, you can:

View the author's documentation as an HTML file1.
Open a "Browser" to see some help patches which are included in Pd2.

Placing, connecting and moving Objects in the Patch

Use the "Put" menu to place an "Object" in your patch. Click on the patch to drop the object in its place. You
will see a box made of a broken blue line, with a flashing cursor inside indicating that you should type
something there.

Mac OS X 53

Objects are the "vocabulary" of Pd. The more names of objects you know, the more complicated things you
can do with Pd. If you type the word "print" inside this object and click again outside the box, you will create
the [print] object. If you right-click (or use the Control key and click on OS X), you will have the option to
open the help file for that object. This is something like the "dictionary entry" for the object, and should
define what it does and also show several examples of its use.

Return to the "Put" menu, and this time place a "Number" in your patch. Notice that the shape of the number
box is different from the shape of the object box.

You should also notice that both the object and the number boxes have small rectangles at the corners. If these
are at the top of the object, they are called "inlets", and at the bottom they are called "outlets". When you are
working on your patch, your cursor is shaped like a pointing finger. If you put that finger over an outlet, it
changes into a black circle which indicates that the outlet is selected.

Select the outlet of the the number box, click and drag that black circle until it reaches the inlet at the top of
the [print] object. When you have done that, you will see the cursor change from the pointing finger to the
black circle again. If let go of the mouse button now, you will make a connection from the outlet of the
number box to the inlet of [print]. If you want to remove this connection, place your cursor over the
connection until you see a black X and then click. The connection will turn blue and you can remove it with
the Backspace or Delete key on your keyboard.

Placing, connecting and moving Objects in the Patch 54

If you click on the patch away from the number box and [print] object and drag, you can draw a box which
selects them. You will see they are selected because they will turn blue. Single objects can be selected by
clicking once on them.

Once the objects on screen are selected, you can:

Move them by dragging them with the mouse•
Move them in small increments with the Arrow keys•
Move them in larger increments with the Shift and Arrow keys•
Delete them with the Backspace or Delete keys•
Copy them by using the Control and C keys (Apple and C keys on OS X) or the Copy menu item
under Edit

•

Cut them by using the Control and X keys (Apple and X keys on OS X) or the Cut menu item under
Edit

•

Placing, connecting and moving Objects in the Patch 55

Once Cut or Copied, you can Paste them with the Control and V keys (Apple and V keys on OS X)
or the Paste menu item under Edit

•

You can also Duplicate the selected items with the Control and D keys (Apple and D keys on OS X)
or the Duplicate menu item under Edit

•

It is recommended to use the duplicate function rather than the paste function, because pasted objects are
placed directly on top of the previous object, making it difficult to see them. Duplicated objects are placed to
the lower right side of the original, making them easier to find and move.

Pasted or duplicated objects are automatically selected together, so you can grab ahold of them and move
them immediately after placing them in the patch.

Edit Mode and Play Mode

So far we've been able to put objects in the patch, connect them, move them around or delete them. But how
does one get some results from this patch? In this case, we have connected a number box to a [print] object,
which should print the numbers we send to it in the main Pd window.

To make this happen, we need to change out of "Edit Mode" and into "Play Mode". You can do this by
clicking on the "Edit Mode" item in the Edit menu, or by using the Control and E keys (Apple and E keys on
OS X).

When you do this, you will see that the pointing finger cursor changes into an arrow cursor.

Edit Mode and Play Mode 56

If you click and drag inside the Number object now, you can change the numbers inside of it. Any changed
number is sent to the outlet, which then goes on to the inlet of the [print] object, and the number is printed to
the main Pd window.

Edit Mode and Play Mode 57

If you click once on the number box in Play Mode, you can also use your keyboard to change the value, and
the Enter key to send the value to the outlet. If you hold the Shift key while using the mouse to change the
number, you will have decimal numbers. Using the Alt key plus a mouseclick will toggle the Number box
between 0 and 1.

If you would like to make any changes to this patch, you can use the "Edit Mode" menu item, or the key
combination Control (or Apple) and E to change back and forth between Edit and Play modes. Note that you
are automatically placed in Edit Mode whenever you add any new item from the "Put" menu to your patch.

Messages, Symbols and Comments

The "Message" box is used to store and send information to other objects, and can contain numbers or text. It
also has a unique shape, which resembles an envelope like you would use to send a letter. Place two different
messages above the number box in our exercise. Like the object, messages also give a flashing cursor
indicating that you should enter some information when you create them. Enter "2" in one of the messages
and "4" in the other, and connect both to your number box. Switch to Play Mode and click on each of the
messages. When you do, you will see that the number box changes according to the message that you send it,
and that the message is also sent onwards to the [print] object.

You can also send numbers and other information to the message box. Create a message with the text "$1 is a
beautiful number", and connect it to the [print] object. Then connect a Number to the inlet of the message, and
in Play Mode change the value of the number. You will see in the main Pd window that whatever number you
send to this message replaces the $1. This is because $1 is a "variable", and will take the value of whatever
you send to it. This is important because different objects need to be sent different messages in order to do
things. We will look at more uses for messages and variables later in the Dataflow Tutorial.

Messages, Symbols and Comments 58

A "symbol" is another way of storing and sending information. Once created, you can use it to display the
output of some objects, or you can type directly into it and hit Enter to send the text out. Please note that no
spaces will appear in the symbol box when you type into it, since separate words would be considered
separate symbols.

A "comment" is simply a way of making a note to yourself so that you (or someone else) can understand what
you were trying to do later on. You can make as few or as many as you want, and they have no effect on the
patch itself.

GUI Objects

Pd has a number of GUI objects you can use to graphically control your patch and to improve its visual
appearance. These are:

Bang: this GUI object sends a Message named "Bang" every time it is clicked. "Bang" is a special
message, which many Objects interpret as "do an action right now!". Using the Bang GUI object is
the same as creating a Message box with the word Bang in it. The Bang GUI object can also be used
to receive and display Bang messages. For more information on this, see the "Counter" chapter in the
Dataflow Tutorial.

1.

Toggle: when clicked, the Toggle sends out one of two values--a zero when it is unchecked and a2.

GUI Objects 59

non-zero number when it is checked. The non-zero number is 1 by default, however this can be
changed in the "Properties". The Toggle also has an inlet, which can be used to display whether an
incoming number is zero or not.
Number2: this is almost identical to the Number box, however it has further options in its
"Properties", including the ability to save its current value when the patch is saved (by changing the
"no init" box to "init"). The Number2 has in anlet which can be used to display incoming numbers as
well.

3.

Vslider and Hslider: these are Vertical and Horizontal sliders which send out their current value
when moved with the mouse. The default range of a slider is 0-127, which can be changed in the
"Properties". Both sliders have an inlet which can be used to display incoming numbers within the
range of the slider.

4.

Vradio and Hradio: these are Vertical and Horizonal "radio buttons", which send out their current
value when one of the buttons in them is clicked with the mouse. The default size of a radio button is
8 buttons, which can be changed in the "Properties". Both radio buttons have an inlet, which can be
used to display integer (whole) numbers within the range of the radio buttons.

5.

VU: a VU meter displays the average volume level of any audio signal which is connected to it in
Decibels. You may switch the value scale on the right side on and off in the "Properties".

6.

Canvas: a canvas is a rectangular area of pixels, whose size and color may be changed under its
"Properties". Canvases are useful as backgrounds in your patch to improve its visual appearance and
readability. Canvas also can be used as movable GUI objects that gather information about their
position (x,y) inside a patcher. Keep in mind that Pd remembers the order in which anything is placed
in the patch, so if you want your canvas to be behind certain objects, you must either create it first, or
you must Select, Cut and Paste the objects you want in the foreground so that they appear in front of
the canvas.

7.

GUI Object Properties

If you right-click (or Control and click on OS X) on any GUI object, you will see the "Properties" menu.
Here, you can change many aspects of each GUI object, such as its default values, size in pixels or its color.
To change colors on Linux and Windows you should see a selection of available colors. On OS X these boxes
are empty, so you must click on the "Compose Color" button. You can also add a label to your GUI object as
well as set the Send and Receive symbols. For more information on Send and Receive, please see the
Send/Receive chapter of the Patching Strategies tutorial.

GUI Object Properties 60

Arrays and graphs

An "array" is a way of graphically saving and manipulating numbers. It works in an X/Y format, meaning you
can ask the table for a value by sending it a value representing a location on the X (horizontal) axis, and it will
return the value of that position value on the Y axis.

To create an Array, use the "Put" menu. When the new array is created, you will see two menus where you
can change the properties of the array.

In the "canvas" properties menu, you can set the "X range" and "Y range", which represent the length in units
of each axis, as well as the visual size of the array in pixels. In the "array" properties menu, you can set the
"size" of the Array, which represents its length on the X axis, as well as it's name. Each Array you create must
have a unique name, otherwise you won't be able to read from them.

Once an array is created and you are in Play Mode, you can click on the line inside and draw curves into the
array. Arrays can also be filled with information from datafiles or soundfiles on your computer, as well as

Arrays and graphs 61

with mathematical functions. We'll discuss arrays in more detail in the arrays chapter of the Dataflow
Tutorial.

Graph

A "graph" is simply a container a graphical container that can hold several arrays. An array needs a graph to
be displayed, so whenever you create an array from the menu, you will be asked whether you want to put it
into a newly created graph or into an existing graph.

A Note on using GUI Objects

Pd uses a "vector-based" system for drawing the user interface. That means that every element on the screen is
defined by a set of numbers rather than an image, and every change to these elements means that your
computer must recalculate that part of the screen. For this reason, having a lot of GUI elements which are
constantly changing is not recommended, as it can cause interruptions in the audio or slow down the response
time of the interface.

In particular, be careful not to use too many of the following:

VU meters1.
Graphical bangs, number boxes, sliders or radio buttons with rapidly changing inputs2.
Arrays which are visible on the screen and which are redrawn3.

For a way of "hiding" GUI elements when they are not in use, please see the Subpatches and Abstractions
chapters of the Patching Strategies Tutorial. And for a way of "hiding" the connections between GUI
elements, please see the Send/Receive chapter of the Patching Strategies Tutorial.

Graph 62

Troubleshooting
There are many small things that might not work straight away. Here are some of the most common issues
you might come across.

I don't hear any sound!

First make sure that the box marked "compute audio" is checked in the main Pd window. Then check to see
that you have selected the right soundcard and drivers for your system, and that the soundcard is connected
and operating. On OS X, make sure the check-boxes next to your selected soundcard have been checked in
"Audio Settings". On Linux or OS X with Jack, make sure the Jack application is running. On all platforms,
check the audio control panel which comes with your Operating System and make sure the proper output is
enabled there, and that it's playback volume is turned up. Also make sure you are using the correct sampling
rate in Pd to match that of your soundcard.

Left: the "compute audio" button in the main Pd window. Right: the "Audio Settings" dialog.

There are clicks, glitches or crackles in the test tone!

More than likely you have chosen a latency that is too fast for your computer and soundcard to handle. Return
to the "Audio Settings" menu and increase the "delay" time there. On Linux, it is also possible that other
processes running on your computer, or even a badly configured or slow graphics card, can affect the
performance of Pd. Consider running Pd with the "-rt" flag enabled (Linux only!). This can be done from the
command line, or by adding "-rt" to the "startup flags" under the "Startup" menu. On Linux or OS X with
Jack, it is possible to set the latency of the Jack application to a greater amount and reduce glitches (called
"xruns" in Jack) there as well.

The test tone sounds distorted!

It is possible that you are playing the sound too loud for your soundcard. Using the controls of your soundcard
to reduce the playback volume. Also make sure you are using the correct sampling rate in Pd to match that of
your soundcard.

I'm not seeing any audio input!

Perhaps you did not enable sound input. On OS X, make sure the check-boxes next to your selected soundcard
have been checked in "Audio Settings". Also, some cards with an uneven number of in and out channels can
have problems in Pd. Try setting the number of channels the same for the input and output. On all platforms,
check the audio control panel which comes with your Operating System and make sure the proper input is
enabled there, and that it's recording volume is turned up.

 Troubleshooting 63

The QJackCTL application on Linux allows easy routing of audio signals between applications and the
soundcard, or between applications on the same computer.

I don't see any MIDI input!

Check to see that your MIDI devices or programs are actually sending data, and that your Operating System is
correctly sending this data to Pd. On OS X, check to see that you have selected the proper MIDI devices, and
that the "Audio MIDI Setup.app" was running before you started Pd. On Linux using the default MIDI
drivers, check to see that you selected the proper MIDI device at startup. On Linux with the ALSA-MIDI
drivers, make sure you have properly connected your MIDI devices or MIDI programs to Pd. Using Jack with
the "QJackctl" application is recommended for this purpose. On Windows, consider using an application like
MIDI Ox/MIDI Yoke Junction to see, analyze and manage your MIDI connections.

The "MIDI Settings" dialog.

It is necessary to have the "Audio MIDI Setup" application on OSX running in to connect MIDI hardware and
software ports to Pure Data.

 Troubleshooting 64

QJackCTL also allows Linux users to route ALSA MIDI between applications and hardware MIDI ports.

I get the message "... couldn't create" when I type an object's name and there's a dashed line around
my object!

The reason for this error is that you have asked Pd to create an object which does not exist. There can be
several reasons for this error, and the most common one is spelling. Object names in Pd must be spelled
correctly, and they are case sensitive. [Osc~] or [OSC~] will not create in place of [osc~], for example, nor
will [osc] without the tilde. Sometimes users accidentally combine the creation argument and the object name,
such as [+1] instead of [+ 1]. New Pd users also often get confused between Objects and Messages, which are
very different types of elements which can be placed in the patch from the "Put" Menu. You can use the "Find
last error" function under the "Find" menu to track down which objects did not create. Please see the chapter
called "The Interface" for more details.

I get the message "... couldn't create" when I open a patch and there's a dashed line around my object!

If you get this error when opening a patch which you're pretty sure works otherwise (i.e. you've downloaded it
from the internet or you created it in a previous Pd session), then it's likely that there is an External Object
which was available when the patch was created, but is not available now. You can use the "Find last error"
function under the "Find" menu to track down which objects did not create. Pd will preserve the location and
connections of an object which fails to create, but it will not function. While most of the Pd Externals are
available in the Pd Extended distribution, some are not, or require additional configuration of the "Path" and
"Startup" settings. Please see the relevant sections in the "Configuring Pd" chapter. If the External is not
available in Pd Extended, you may need to install it yourself.

I get the message "error: signal outlet connect to nonsignal inlet (ignored)" when I open a patch.

This error tends to go with the previous error "I get the message '... couldn't create' when I open a patch...".
Often this error means that an object has failed to create, usually because it uses an External Object which is
not available in the current installation or configuration of Pd. Pd will preserve the location and connections of
an object which fails to create, but it will not function. You can use the "Find last error" function under the
"Find" menu to track down which objects caused errors. Pd will treat uncreated objects as Dataflow Objects
even if they were originally Audio Objects, so this error will follow the previous one. Please see the relevant
sections in the "Configuring Pd" chapter for information about setting the "Path" and "Startup" options. If the
External is not available in Pd Extended, you may need to install it yourself.

 Troubleshooting 65

I get the message "error: can't connect signal outlet to control inlet" and I cannot connect two objects
together!

The output of Audio Objects (those with a tilde ~ in their name) normally cannot be connected to Dataflow
Objects (those without a tilde ~ in their name). So Pd will not allow these connections to be made. You might
want to look at your patch and make sure that you are using the proper combination of objects.

I get the message"error: DSP loop detected (some tilde objects not scheduled)" when I click "Audio
ON", and the sound is not working!

In an analog electronic system, you can easily connect the output of a mixer back to one of the inputs, turn up
the channel and get feedback. This is because everything in an analog system happens pretty much
simultaneously. Computers do not work like this, however, and therefore you cannot ask a Pd patch to
compute results based on it's own simultaneous output. Pd works in what are called Blocks (i.e. a group of
samples, such as the default number of 64 samples), and all the Samples in each Block must be computed
before they are output. So a DSP loop occurs when a patch needs information which is calculated inside the
same Block in order to create output. You can use the "Find last error" function under the "Find" menu to
track down which objects are causing the DSP loop. The easiest way around this problem is to create at least
a one Block delay between the objects which are connected together. The objects [send~] and [receive~] are
useful for this, because they have a built-in delay of one Block. To change the number of Samples computer
in each Block, you can use the [block~] object.

I get the message "error: stack overflow" when I connect two Dataflow Objects together!

 A "stack overflow" happens when you have asked Pd to compute a recursive operation, and this operation
causes Pd to run out of memory. Often this is the first step before crashing Pd! A common example of a
recursive operation which could cause this error is the classic counter, using [float] and [+ 1]. If the output of
[float] is connected to the input of [+ 1], and the output of [+ 1] is connected to the right-most ("cold") inlet
of [float], then a "bang" message sent to the left-most ("hot") [float] will output a number which increases by
one every time that message is sent. If, however, the output of [+ 1] is connected to the left-most ("hot") inlet
of [float], then sending the message "bang" to the left inlet of [float] will have a different effect. It will ask
[float] and [+ 1] to add numbers together as fast as the computer will let them do it. Because Pd will not stop
and ask you "are you sure you want to do this?", this operation will quickly use up all the memory resources
which Pd has, and cause a stack overflow. Please see the sections on "Hot and Cold" as well as on "Trigger"
in the "Dataflow Tutorials" section for more information on how to avoid stack overflows.

 Troubleshooting 66

I get the error message "connecting stream socket: Network is unreachable" when I start Pd!

If you are using the Linux operating system, and see this message when you start Pd, it means your machine
cannot make a network connection to itself. You must configure your loopback network device. In many
Linux distributions, you can do this by answering "yes" when the system configuration tools ask if the
machine will be a "network" (even if it won't).

 Troubleshooting 67

Building a Simple Synthesizer
These tutorial uses the concept of very simple electronic music instruments to introduce some of the core
concepts of synthesizing and processing audio in Pure Data. Those who are already familiar with audio
synthesis should quickly grasp how it is done in Pd, while those with no previous knowledge will be
introduced to its theory alongside its practical application in Pd.

The MiniMoog is one of the most famous analog synthesizers in the world. We'll take a shot at reproducing
some of its basic features in this tutorial. Source: http://en.wikipedia.org/wiki/Image:Minimoog.JPG

A synthesizer is one of the most fundamental instruments in electronic music. Its essential function is to
generate a musical tone when it receives a note from either a keyboard or a sequencer. In analog electronic
music, a synthesizer is built from several modules, or parts:

The Oscillators, which generate the tones.1.
The LFO (Low Frequency Oscillator), which usually modulates either the frequency or gain of the
Oscillator(s), or the frequency of the Filter.

2.

The Filter, which emphasizes and/or removes certain frequencies. 3.
The Envelope Generator, which controls changes in frequency or gain over the duration of the note. 4.
The Amplifier, which controls the gain of the synthesizer.5.

Synthesizers can be capable of playing one note at a time (monophonic), or several notes at a time, allowing
for chords (polyphonic). The number of simultaneous notes that a synthesizer can play are called its voices.
Originally, the word "Voltage" was used (i.e. Voltage Controlled Oscillator, Voltage Controlled Filter or
Voltage Controlled Amplifier) because in an analog synthesizer each of these modules was controlled by
electrical voltage from the keyboard, sequencer or another module. Because we're working in the digital
domain, this voltage is replaced by data in the form of numbers, messages and streams of digital audio.

For this tutorial, we will construct a monophonic synthesizer in Pd based roughly on the design of the famous
MiniMoog analog synthesizer (but much simpler!), and with a sound which is useful for generating basslines.
It will take input from the computer keyboard, a MIDI keyboard or the sequencer we will build in the the next
tutorial. This synthesizer will be based on two Oscillators to produce the note, another oscillator (the Low
Frequency Oscillator) which will change the gain of the sound, a Filter which will only allow only certain
frequencies of the sound to pass, an Envelope Generator which will control the "shape" of the gain of the
note, and a final Amplifier which will be controlled by the Envelope Generator and a volume setting on the
screen.

Building a Simple Synthesizer 68

http://en.wikipedia.org/wiki/Image:Minimoog.JPG

Downloads

The patches used in this tutorial can be downloaded from :

http://en.flossmanuals.net/floss/pub/PureData/SimpleSynthesizer/simple_synth.zip

Downloads 69

http://en.flossmanuals.net/floss/pub/PureData/SimpleSynthesizer/simple_synth.zip

Oscillators
Oscillators are the basic signal generators in electronic music. By combining, filtering or modulating them,
almost any imaginable sound can be created. In Pure Data, audio signals are represented by a stream of
numbers between the values of -1 and 1. So the waveform of each oscillator has been programmed to send out
values within this range.

The name of each oscillator refers to its waveform, which is the shape of one period (or one Hertz) of that
oscillator. Different waveforms make different sounds.

Sine Wave Oscillator

The Sine Wave Oscillator makes a pure tone with no harmonics. The shape of the wave smoothly moves
from 0 up to 1, back down through 0 to -1 and back up to 0. (Remember to turn the DSP on so that you can
hear the audio).

Sawtooth Wave Oscillator

The Sawtooth Wave Oscillator sounds harsher in comparison to the Sine Wave, and it contains both odd and
even harmonics of the fundamental frequency. This makes it ideal for filtering and for synthesizing string
sounds. The shape of this wave ramps up sharply from "0" to "1", then immediately drops back to "0".

Square Wave Oscillator

The Square Wave Oscillator has a "hollow" sound, and contains only odd harmonics and is useful for
synthesizing wind instrument as well as "heavy" bass sounds. Its shape alternates instantly between 0 and 1.
Since there is no square wave object in Pd, we create a square wave by checking to see if the output of the

Oscillators 70

Sawtooth Wave object [phasor~] is greater than 0.5. If it is, the Expression object [expr~] outputs a 1,
otherwise it outputs a zero. This creates the "high" (1) and "low" (0) states of the square wave, as you can see
in the graph.

Other Waveforms

Other possible waveforms include a triangle wave as well as many other mathematical shapes.

Square Wave Oscillator 71

Frequency
In order to to create sound, each oscillator object takes a numerical input which represents a frequency in
Hertz. This number determines the number of times the oscillator will make its waveform during one second.
By using a creation argument (a default setting typed into the object box when the object is first created), we
can set the initial frequency of an oscillator. And by using an [hslider] (Horizontal Slider), a Number or a
Message, we can send numerical messages to change the frequency of the oscillator.

Audio vs Message Cables

In all the examples so far, notice the difference between the cable for messages, which is thin, and the cable
for audio, which is thicker. Messages can be sent to audio objects (those with a ~ in their name), but usually
audio cannot be sent to message objects (those without a ~ in their name). Attempting to do so will cause Pd
to print "error: can't connect signal outlet to control inlet", and it will not allow the connection to be made.

MIDI and Frequency

For many musical applications, the MIDI scale is a useful way of controlling the frequency of an oscillator.
One can imagine the MIDI scale as a piano keyboard with 128 keys on it, and each key has been marked with
a frequency in Hertz which represents that musical note. Below is a part of the table which makes up the
MIDI scale. Three octaves are shown. The most important thing to notice is that a note which is one octave
higher than another note (for example, the three A notes of 110 Hz, 220 Hz and 440 Hz) has a frequency
which is twice that of the lower note.

 MIDI MIDI MIDI

Frequency 72

 Note Frequency Note Frequency Note Frequency

 C 36 65.4063913251 48 130.8127826503 60 261.6255653006
 Db 37 69.2956577442 49 138.5913154884 61 277.1826309769
 D 38 73.4161919794 50 146.8323839587 62 293.6647679174
 Eb 39 77.7817459305 51 155.5634918610 63 311.1269837221
 E 40 82.4068892282 52 164.8137784564 64 329.6275569129
 F 41 87.3070578583 53 174.6141157165 65 349.2282314330
 Gb 42 92.4986056779 54 184.9972113558 66 369.9944227116
 G 43 97.9988589954 55 195.9977179909 67 391.9954359817
 Ab 44 103.8261743950 56 207.6523487900 68 415.3046975799
 A 45 110.0000000000 57 220.0000000000 69 440.0000000000
 Bb 46 116.5409403795 58 233.0818807590 70 466.1637615181
 B 47 123.4708253140 59 246.9416506281 71 493.8833012561

For the complete table, see http://www.phys.unsw.edu.au/jw/notes.html

The object in Pd which turns a MIDI note into a frequency in Hertz is called [mtof], or MIDI to Frequency.
When the MIDI note "69" is sent to it, for example, it will output the number "440". Looking at our examples,
you can see that each slider has a range of 0-127, and this is converted by an [mtof] object to a frequency
which tells the oscillator what to do.

Of course, you aren't limited to the notes that Western music schools teach you are correct. So-called
"microtonal" notes are possible as well. If you hold down the Shift key while using the mouse to change a
Number, decimal numbers are possible, so that you can tell an [osc~] to play MIDI note number 76.89, for
example.

MIDI and Frequency 73

http://www.phys.unsw.edu.au/jw/notes.html

Additive Synthesis
Since Pd adds together the audio signals which come to the inlet of any audio object, it's simple to add two or
more signals together into a single waveform. Below, we can see what happens when a Sawtooth Wave and a
Sine Wave are added together. The resulting waveform is a combination of the shapes of both, added together.
Note that the two waveforms are sent to an Audio Multiplication [*~] object, which multiplies the combined
signal by half to reduce the total range of values sent to the soundcard.

Remember that, at full volume, each oscillator is going from either 0 or -1 to 1 many times a second. Because
most everything in Pd is simply numbers, any number of signals can be added together. However, if the
combined values of those signals go outside the -1 to 1 range when they reach the Digital to Analog Converter
[dac~] object (i.e. the line out to the sound card), then clipping and distortion will occur. Any value outside of
the accepted range will simply be treated as a -1 or a 1. You can see how two combined signals can go outside
this range on the graph in the patch below.

An interesting thing happens when we combine two waveforms whose frequencies are very close to each
other. The combined values of the two waves interfere with each other, causing a periodic modulation of the
sound. The frequency of this modulation is equal to the difference of the two original frequencies in Hz. This
is known as a "beating frequency", or "phase interference". The sound of two oscillators slightly de-tuned
from each other is often used for different kinds of electronic music sounds, such as a "fat" bass effect.

Additive Synthesis 74

Additive Synthesis 75

Amplitude Modulation
Amplitude Modulation Synthesis is a type of sound synthesis where the gain of one signal is controlled, or
modulated, by the gain of another signal. The signal whose gain is being modulated is called the "carrier", and
the signal responsible for the modulation is called the "modulator". In classical Amplitude Modulation, or AM
Synthesis, both the modulator and the carrier are oscillators. However, the carrier can also be another kind of
signal, such as an instrument or vocal input. Amplitude Modulation using a very low frequency modulator is
known as Tremolo, and the use of one audio signal to Amplitude Modulate another audio signal is known as
Ring Modulation.

Simple AM Synthesis

Classical AM Synthesis is created by using one oscillator to modulate the gain of another oscillator. Because
we are changing the gain of the carrier oscillator from 0 (no gain) to 1 (full gain), the modulating oscillator
must output a signal which changes between 0 and 1. This is most often done at audio frequency rates from 20
Hz and up. In this case, the sawtooth waveform of a [phasor~] is used as the modulator, and the sine
waveform of an [osc~] is the carrier.

Tremolo

Tremolo is a form of Amplitude Modulation where the gain of an audio signal is changed at a very slow,
often at a frequency below the range of hearing (approximately 20 Hz). This effect is commonly used to alter
the sound of organs or electric guitar.

Since a sine wave is often used for a smooth-sounding tremolo effect, in this patch we have taken the output
of an [osc~], which normally moves between -1 and 1, and scaled it so that it's output is now from 0 to 1. This
is known as adding a DC Offset to the signal. For more discussion on this, please see the chapter on DC
Offset.

Amplitude Modulation 76

Ring Modulation

You can also modulate one audio signal with another audio signal (i.e. a signal which has both positive and
negative values). This effect is called Ring Modulation. If you have a microphone connected to your
computer, try the following patch. The sound of your voice will enter Pd through the Analog to Digital
Converter [adc~] object (the line in from the soundcard), and be modulated by the sine wave of a [phasor~]
object. Notice that there is no sound when only one audio signal is present (i.e. when you are not speaking).
This is because one audio signal multiplied by zero (no audio signal) will always be zero. And the louder the
input signal is, the louder the output will be.

The Ring Modulation effect was often used in Science Fiction movies to create alien voices. You may want to
use headphones when running a microphone into Pd to prevent feedback (the output of the speakers going
back into the microphone and making a howling sound).

Tremolo 77

Frequency Modulation
While Amplitude Modulation Synthesis changes the gain or volume of an audio signal, Frequency
Modulation Synthesis, or FM Synthesis, is used to make periodic changes to the frequency of an oscillator.
In it's simplest form, Frequency Modulation uses two oscillators. The first is the carrier oscillator, which is
the one whose frequency will be changed over time. The second is the modulator oscillator, which will
change the frequency of the carrier.

For the carrier, we only set the base carrier frequency using a Number box and a MIDI to Frequency [mtof~]
object. Because all the adjustments afterwards will be done by audio signals, it's best to use the audio version
of [mtof], hence the tilde is added to its name.

The modulator is where we do most of the adjustments. The first thing we want to do is set the frequency of
the modulator, i.e. how fast it will change the frequency of the carrier. We do this with a Number box. The
second thing we want to set is how much change we will make in the base frequency of the carrier. So the
output of the modulator [osc~] is multiplied by another Number box using an Audio Multiplier [*~] object to
get the modulation amount.

When this stream of numbers, which is changing with the speed the modulator and in the range set by the
modulation amount, is added to the carrier frequency, then the carrier frequency will change as well. This
stream of numbers is sent to the second [osc~], where it produces a complex sound which you can see in the
graph.

When the amount of modulation is very small (only a few Hz), then a vibrato, or "vibration" of the carrier
frequency will be heard. When the amount of modulation is greater, then a greater "glissando", or sweeping of
the carrier frequency will be heard. The frequency of the modulator will determine how quickly these changes
heard in the frequency of the carrier will happen.

Even more complex sounds can be created by using further modulators to make changes in the frequency of
the main modulator oscillator.

Frequency Modulation 78

Frequency Modulation 79

Square Waves and Logic
Let's look a little more closely at manipulating square waves with Low Frequency Oscillators and Logic
Operations.

Pulse Width Modulation

We've already seen how a simple mathematical check ("is the value of this audio ramp greater than 0.5?") can
be used to turn a Sawtooth wave into a Square wave. This produces a Square Wave which has a value of "1"
half the time, and of "0" the other half of the time. This is called the Pulse Width of the Square Wave.
Different Pulse Widths make a different sound. And when we use a Square Wave as an LFO (Low Frequency
Oscillator), different Pulse Widths will have different effects on the sound it is modulating.

When the Square Wave is "1" half the time and "0" the other half, it is said that it has a Pulse Width of 50%.
To change the Pulse Width, it is necessary to send a new number to replace the "0.5" in the [expr~] object.
The [expr~] object currently has one Variable, which is written as $v1, and one constant, "0.5". If the
constant is replaced with a second variable, $v2, then we can use a Number box to change the Pulse Width.
Sending the number "0.25" will result in a Pulse Width of 25%, i.e. the Square Wave will be "1" a quarter of
the time, and "0" three quarters of the time.

It is also possible to modulate the Pulse Width of the Square Wave with an LFO, which creates a unique
sound. Instead of using a Number box, the output of a Sine Wave Oscillator is sent to an Absolute audio
[abs~] object, which converts any negative values from the [osc~] into positive ones, and this stream of
numbers is sent to the second inlet of the [expr~] object.

Square Waves and Logic 80

Math & Logic Operations

Once we are working with Square waves, whose value is either a "0" or a "1", then we can also use Logic
operations to create patterns. Logic operations take as their inputs either a "0" or a "1" (and nothing in
between!), and compare the two numbers, giving either a "0" or a "1" as an output.

The AND operation works like this:

 0 AND 0 = 0
 0 AND 1 = 0
 1 AND 0 = 0
 1 AND 1 = 1

In short, this means that the output is "1" only when both inputs are also "1", otherwise the output is "0". In
Pd, this is represented by the && operation used in the Expression [expr] or Audio Expression [expr~]
objects, i.e. [expr~ $v1 && $v2].

The OR operation works like this:

 0 OR 0 = 0
 0 OR 1 = 1
 1 OR 0 = 1
 1 OR 1 = 1

In short, this means that the output is "1" only when both inputs are also "0", otherwise the output is "0". In
Pd, this is represented by the || operation used in the Expression [expr] or Audio Expression [expr~] objects,
i.e. [expr~ $v1 || $v2].

And the EQUAL operation works like this:

 0 EQUAL 0 = 1
 0 EQUAL 1 = 0
 1 EQUAL 0 = 0
 1 EQUAL 1 = 1

Pulse Width Modulation 81

In short, this means that the output is "1" only when both inputs are the same, otherwise the output is "0". In
Pd, this is represented by the = operation used in the Expression [expr] or Audio
Expression [expr~] objects, i.e. [expr~ $v1 = $v2].

In the following patch, different logic operations are used to make patterns from two Square Wave Oscillators,
which are then compared with a final Square Wave Low Frequency Oscillator. What you will hear is a pattern
of Square Waves which are switched on and off by each other. The final LFO makes a recognizable rhythm in
the sound.

Try replacing any of the && (AND) or || (OR) operations in the [expr~] objects with an == (EQUAL)
operation to hear the difference it makes in the sound. Or add further Logic operations to the output of the
LFO to make more complex rhythmic patterns. You can also experiment with changing the Pulse Width as
described in the previous patches.

Math & Logic Operations 82

Generating Waveforms

Outline

This chapter will cover generating sawtooth, triangle and square waveforms from a combination of sine wave
harmonics, graphing these waveforms to an array and playing this array back as an oscillator.

Introduction

Besides using the built-in oscillators such as [osc~] and [phasor~], or using audio mathematics on the output
of [phasor~] to create new waveforms, it is possible to generate the waveforms of a saw, triangle or square
wave out of a combination of sine waves. When written to an array, these waveforms can be played back as
an oscillator.

This method has a few advantages over using [phasor~] to create different waveforms. The first advantage is
that the resulting waveforms will be bandlimited. This means the number of harmonics they produce will be
limited, and will cause less aliasing noise. For more details on aliasing, see the Antialiasing chapter of this
FLOSS Manual.

The second advantage is that these waveforms much more closely resemble the kinds of waveforms generated
by analog electronics. Real world analog waveforms do not have the completely sharp angles of their
idealized, digital counterparts due to the "rippling" effect inherent in the resonance of their circuitry. One
could subjectively say that these waveforms are more "warm" and "analog-sounding" than the ones produced
by [phasor~].

The basic principle we will use here comes from the Fourier theorem. This theorem states that any complex
waveform can be broken down into a series of simpler sine waves which, when added back together, can
reproduce that waveform. The more sine waves used to represent the complex wave, the more accurate the
reproduction will be. While a full explanation of the math behind this is outside the scope of this manual, we
will cover the use of this theorem to create three basic wave forms, the sawtooth, the triangle and the square.

Using Sinesum

In Pd, we can write waveforms to a table using an internal message. An internal message is a message box
which, when clicked, sends the message inside to the Pd application itself. An example would be the messages
we can use to turn audio processing on and off in Pd:

So to create and load a table with a waveform, we must first create an array from the Put menu. Then we give
it the name "waveform" in the properties:

Generating Waveforms 83

After that, we create a message, and type the following in it (using the Return key after the semicolon to start
a new line):

;
waveform sinesum 2051 1

The semicolon indicates that the message is an internal message, and "waveform" indicates that we are
sending information to the array named "waveform". The word "sinesum" tells the array that we will be
sending it a series of harmonics to graph. The number "2051" tells the array that we want to graph those
harmonics out on 2051 units on the X range, so the array will be resized from 100 (its default size) to 2051.
Finally, the number "1" indicates that we want to write a single sine wave with a peak amplitude of 1 to the
array.

When we click the message, we see a pure sine wave graphed to the array:

Sawtooth Wave

The way that sinesum works is that you send it a list of the amplitudes of the harmonics you wish to graph. A
sawtooth wave is the simplest, as it uses the formula 1/h (where "h" indicates the number of the harmonic) to
compute the amplitudes. Therefore, the amplitude of the first harmonic is 1/1 = 1, the second is 1/2 = 0.5, the
third is 1/3 = 0.33333, etc etc.

Here is a message to compute a very rudimentary sawtooth wave using only four harmonics:

;
waveform1 sinesum 1 0.5 0.33 0.25

And here it is graphed:

Using Sinesum 84

Because the graph is the product of several sine waves being added up, the waveform can go outside the
normal -1 to 1 bounds of an audio signal. The message:

;
waveform1 normalize 1

will adjust the range of the signal to fit within the bounds of -1 and 1. Below, we have two examples of
sawtooth waves, both normalized to the range of -1 to 1. As can be seen, the more harmonics used to calculate
the waveform, the closer it gets to its idealized mathematical form:

Playback of the Graphed Waveforms

To play back the waveforms we have graphed to the arrays, we use the [tabread4~] object. It takes an audio
signal as its input, which reads along the X axis of the array and outputs as an audio signal the values that it
finds along the Y axis.

We can use [phasor~] to play the array as an oscillator when we scale its output, which is normally 0 to 1, to
fit the whole length of the array. Thus, if our array is 2051 places long, then we can use an Audio
Multiplication [*~] object to get an output of 0 to 2051. Increasing the frequency of the [phasor~] will
increase the frequency at which the waveform in the array is played back from start to finish

Sawtooth Wave 85

The [tabread4~] object can take the name of the array it will read as a creation argument, or you can use a
message such as the following to change the array it reads from:

set waveform 2

Triangle Wave

A triangle wave can also be quite simply generated with only a few harmonics. The shape of a triangle wave
is made using only the odd harmonics (1, 3, 5, 7, etc). Zeros are used for the amplitude of the even harmonics
(2, 4, 6, 8, etc). Then 1 is divided by the square of each of those harmonics (i.e. 1/h2). Finally, the amplitude
of every other harmonic is multiplied by -1 (i.e. the amplitudes of the third, seventh, ninth, etc harmonics).
The triangle wave takes shape very quickly with only four harmonics, and as more harmonics are added, the
points of the triangle become sharper.

Square Wave

A square wave takes a few more added harmonics to get close to its ideal mathematical shape. This waveform
is created also using only the odd-numbered harmonics (1, 3, 5, 9...), and zero is also used for the amplitude of
the even harmonics (2, 4, 6, 8...). Then 1 is divided by the number of the harmonic to get its amplitude (i.e.
1/h). As illustrated below, a square wave made up of only four harmonics isn't very square, but when more
harmonics are added its shape becomes very clear.

Playback of the Graphed Waveforms 86

Square Wave 87

Normalizing & DC Offset
In order to optimize a signal for playback, it is often necessary to make some final adjustments to the gain of
the signal to fit it into certain ranges which maximize the dynamic range, or the difference between the
loudest and the quietest parts of the signal. Two very important processes are to remove the DC offset in the
signal, and to normalize the signal.

DC offset is caused when a waveform doesn't cross the zero line, or has unequal amounts of signal in the
positive and negative domains. Normally, we want the signal to have a middle point at zero. When the middle
point is other than that, in our model speaker, the membrane of the speaker does not return to its resting point
during each cycle. This can also affect the dynamic range of the sound. While DC offset can be useful in the
control of some kinds of synthesis (such as Amplitude Modulation or Frequency Modulation), it is
generally considered undesirable in an audio signal.

An example of DC offset: the waveform is only in the positive domain.

And to normalize an audio signal means to adjust its gain to peak at the maximum the sound card allows
before clipping (i.e. -1 and 1). This is done to maximize the dynamic range of the signal when it is played
back.

For example, by default the [phasor~] object ramps from 0 to 1. The middle point (i.e. the DC Offset) is 0.5,
and its dynamic range (the difference between the minimum and maximum values) is half the biggest
possible. In order to get a waveform which uses the full dynamic range of the soundcard without any DC
offset, we need to multiply its signal by two in order to double the dynamic range. This is the normalizing
part. Since now the DC Offset is 1,Then we remove the DC offset by subtracting 1 from every sample value,
resulting in a waveform which crosses zero at the midpoint of its ramp from -1 to 1.

Normalizing & DC Offset 88

Likewise, the same can be done with the square waves we created by comparing the output of [phasor~] with
0.5 with a simple logic operation. The resulting 0 or 1 can be normalized to -1 and 1 with the same audio
math.

And since we are using the [expr~] object to create a mathematical expression for the creation of the
squarewave anyways, we can include the normalizing and dc offset correction directly into that expression
like this:

Normalizing & DC Offset 89

Here, we revisit the sawtooth wave generator, made from inverting the ramp of [phasor~], comparing it with
the original ramp and deriving the minimum values. The sawtooth waveform which results has a DC offset of
0.25 and a gain from 0 to 0.5. By subtracting the 0.25 offset and multiplying by 4, the waveform is DC offset
corrected and normalized.

The same process can be reduced to a single [expr~] object which compares the ramps, performs the DC
offset correction and normalizes the resulting waveform.

A DC Offset is a constant value, this means it has a frequency of 0Hz, because it never changes. A high pass
filter can be used to remove the DC offset of a signal or combination of signals by removing frequencies
below its cutoff frequency. In this case, the [hip~] object is set to attenuate frequencies at or below 1 Hz,
resulting in a waveform centered on zero. It will not, however, normalize the signal afterward, nor will it
prevent clipping (values greater than -1 or 1 which cannot be reproduced by the soundcard).

Normalizing & DC Offset 90

Many Pd programmers use a [hip~ 1] object just before each channel of the [dac~] to eliminate any accidental
DC offset which may have accumulated in the audio signals of their patch.

Finally, a limiter can be used to automatically reduce the overall gain whenever the signal passing through it
exceeds a certain level. In a so-called "lookahead limiter", the audio signal is delayed for a certain amount of
time while the limiter decides if the signal needs to be reduced and by how much. The [limiter~] object in Pd
is useful for this purpose, while the [z~] object delays the signal being measured long enough for the
[limiter~] to output the amplification factor needed to keep the audio signal within bounds. Please check the
help file for [limiter~] for a wide range of uses for this object.

Normalizing & DC Offset 91

Antialiasing

Outline

This chapter describes different techniques for avoiding aliasing artifacts in digital oscillators in Pd, including
the combination of oversampling plus low pass filteringas well as the use of bandlimited oscillators.

Introduction: What is Aliasing?

As discussed in the What is Digital Audio chapter, aliasing occurs when frequencies are generated in a Pd
patch which are above the Nyquist frequency, or half the current audio sampling rate. Thus, for a computer
running at the CD audio rate of 44,100 Hz per second, the Nyquist frequency would be 22,050 Hz. Any
frequency produced over this number will create unwanted extra frequencies in the sound. Subjectively, these
aliasing noises are what can cause oscillators to sound "cheap", "cold" or "digital" in comparison with "warm"
or "analog" antialiased ones.

All waveforms except a sine wave produce harmonics which are multiples of the fundamental frequency.
Even if we never create an oscillator with a frequency higher than 22,050 Hz, the harmonics of any oscillator
besides an [osc~] could easily go over this frequency, resulting in aliasing. Aliasing noise is almost impossible
to remove once it occurs, so if we do not want to hear these inharmonic sounds, we must do something to
prevent them.

The Problem: an Aliasing Oscillator

Looking at some of the oscillators covered earlier, we can see that none of them have any sort of antialiasing
built into them. The following square wave, although normalized and DC offset-corrected to a full range of -1
to 1, produces many aliased frequencies which can be heard when the frequency is changed. These are heard
as inharmonic sounds which "reflect" down from the Nyquist frequency as the frequency of the oscillator is
increased. These aliasing noises are sometimes called "birdies".

Oversampling and Filtering

One technique of antialiasing filtering involves applying a low pass filter. Because no filter is perfect, every
filter has a slope from the cutoff frequency, which is the frequency at which it starts to affect the sound, to
the point where the frequencies are completely removed. In order to remove the high frequency harmonics
which cause aliasing, we would need a filter which has sufficient attenuation at those frequencies to reduce
them below the level of hearing.

In order to create such a filter, we need to increase the sampling rate to give us the frequency range required.
This process is called oversampling, and in Pd this can be done with the object [block~]. When given the
creation arguments "1024 1 16", [block~] will oversample the audio which comes into a subpatch by a factor
of 16 (i.e. up to 705.6 KHz if the current sampling rate is 44.1 KHz), in chunks of 1024 samples at a time. The
signal can then be digitally filtered, removing the higher harmonics which could cause aliasing, and when it

Antialiasing 92

leaves the subpatch it will be downsampled back to the original sampling rate.

The antialiasing filter shown above is taken from the example J07.oversampling.pd in the 03.audio.examples
folder found in the Pd Documentation Browser in the application.

Because this is a very CPU intensive process, it is wise to only include the oscillators you wish to antialias in
this subpatch, and to control them via the [inlet]s of the subpatch!

Bandlimited Waveforms

Another solution to this problem is to use waveforms which produce fewer harmonics for the oscillators.
These waveforms are said to be bandlimited, because the number of harmonics in them have been limited by
the shape of the wave. Bandlimited waveforms are usually the product of a combination of sine waveforms
which add together to produce a certain shape. An example of this is shown below.

Oversampling and Filtering 93

Example taken from audio design coursework by Andy Farnell.

The message

;
saw1 sinesum 2051 1 0.5 0.33 0.25 0.2 0.16 0.14 0.12 0.11

is an internal message which tells Pd to fill up 2051 places of the table "saw 1" with the product of a series of
nine sinewaves. You can see the table, "saw 1" on the left, with the bandlimited waveform, and it's properties
are shown below. To play the table back, the ramp of a [phasor~] is multiplied by 2048 and is sent to a
[tabread4~] object, which uses the incoming audio as the index to play back table "saw 1". The audio which
comes out must be scaled slightly because, as can be seen from the table, the waveform has extremes outside
the normal -1 to 1 bounds.

It should be noted that no technique can completely eliminate aliasing noise, as eventually any oscillator
which is not a pure sinewave will eventually produce harmonics above the Nyquist frequency when its
frequency is increased. The above oscillator is no exception, and sounds best when used as a bass synthesizer.
For more information on bandlimited oscillators, see the Generating Waveforms chapter in this FLOSS
Manual.

Bandlimited Waveforms 94

Filters
A filter works by allowing some frequencies through, while reducing or eliminating others. There are three
different kinds of basic filters to work with in Pd: the Low Pass Filter, the High Pass Filter and the Band Pass
Filter, as well as a Voltage Controlled Filter which can be controlled using some of the LFO techniques we
have already looked at.

Low Pass Filter

A filter which allows only low frequencies to pass is called a Low Pass Filter. The object for this kind of
filter in Pd is [lop~]. It has one inlet for audio and one inlet for a number which determines the frequency in
Hertz where the filter starts to reduce the audio (the Cutoff Frequency). Frequencies above the Cutoff
Frequency are reduced or eliminated.

High Pass Filter

While one which allows only high frequencies is called a High Pass Filter. The object for this kind of filter in
Pd is [hip~]. It has one inlet for audio and one inlet for the the Cutoff Frequency. Frequencies below the
Cutoff Frequency are reduced or eliminated.

Filters 95

Band Pass Filter

A filter which allows some range of frequencies between highest and lowest is called a Band Pass Filter. The
object for this kind of filter in Pd is [bp~]. It has one inlet for audio, a second inlet for the center frequency
that it will allow to pass and a third inlet for the Resonance, which determines the width of the range of
frequencies it allows to pass (the Pass Band). The Center Frequency will pass unchanged, and frequencies
higher or lower than that will be reduced or eliminated. How much they will be eliminated depends on the
Resonance. Useful numbers for the Resonance tend to be between 0 and 10.

High Pass Filter 96

The three filters we've seen so far all take numbers to control their Cutoff or Center Frequencies as well as
their Resonance (in the case of [bp~]. However, there are times when you might want to control the frequency
of a filter with an audio signal. A typical situation is when a filter is swept by an LFO.

Voltage Controlled Filter

[vcf~] (Voltage Controlled Filter) is a filter whose Center Frequency and Resonance can be controlled by
audio signals. The way this is done is quite similar to the tutorial on Frequency Modulation. A Slider sends a
MIDI note to a MIDI to Frequency audio [mtof~] object to provide the Center Frequency to be swept, or
modulated. Then we have an LFO [osc~] object, whose output is multiplied by the amount in Hertz which we
want to sweep the filter frequency. This stream of numbers is added to the Center Frequency coming from the
[mtof~] object and sent to the Frequency inlet of the [vcf~]

Band Pass Filter 97

Voltage Controlled Filter 98

The Envelope Generator
The Envelope of a sound refers to changes in either its pitch or gain over the duration of a note. A gain
envelope is the most common, because it is used to synthesize the dynamics of acoustic instruments. For
example, a piano has a very sharp or percussive attack, with the note becoming loud quite quickly before
gradually fading out. A violin, on the other hand, takes a longer time for the sound to build up as the strings
begin to vibrate, and then fades away relatively quickly. A gain envelope has five main characteristics:

Attack: the length of time it takes the note to reach it's loudest point.1.
Decay: the length of time after the Attack it takes the note to reach it's Sustain volume.2.
Sustain: the volume of the note which is held until the note is Released.3.
Release: the length of time it takes the note to fade to zero after the key on the keyboard has been
released.

4.

This is commonly abbreviated as ADSR, and can be drawn graphically like this, where the horizontal axis
represents time and the vertical axis represents volume:

An additional parameter which comes from the MIDI world is called Velocity, and it refers to how hard the
key of the keyboard has been pressed. In our synthesizer, Velocity will refer to the volume of the note at its
loudest point, i.e the peak of the Attack.

Simple Envelope Generator Using [line]

The simplest Envelope Generator can be made using the object [line]. This object takes two numbers, a target
and a time (in milliseconds), and interpolates numbers to that target in the time given. If it is sent a single
number, the time of the ramp is assumed to be zero, and [line] "jumps" to that value. It remembers that last
value that it reached, so the next pair of numbers will start a new ramp from the current value. If a new pair of
numbers is sent to [line] while it is still making a ramp, it will immediately stop that ramp and start the new
one.

The Envelope Generator 99

To make a simple up/down, or Attack/Decay envelope, we need to send two different messages to [line]. The
first will tell it to go to "1" in a certain amount of time, the second will tell it to go back to "0" in a certain
amount of time. These two messages can be triggered with a single "bang" message, as long as we delay the
triggering of the second message long enough for the first ramp to finish, using the [delay] object.

Complex Envelope Generator Using [vline~]

A more complex envelope can be created with the [vline~] object. This object can be programmed to make
sequences of ramps in order, and with a delay in between them. For example, the message "10 1000, 0 0 1000,
1 1000 3000" would tell [vline~] to do the following:

Ramp up to "10" in 1000ms, then jump to "0" in 0ms after waiting 1000ms (from the start of the ramp), and
finally ramp back up to "1" in 1000ms after waiting 3000ms (from start of the ramp).

Simple Envelope Generator Using [line] 100

Because it accepts more complex messages, [vline~] is useful for the traditional
Attack/Decay/Sustain/Release envelope. Also, [vline~] is an audio object rather than a numeric object, which
means it is more suitable for audio multiplication, as we will see in the next section.

Envelopes Stored In Arrays

For an envelope with an arbitrary curve, a table is the most useful way to go. First we must create a table, by
using the Put menu to place and Array in the patch. When we do that, we will see two Properties dialogs
appear. In one, we name the Array "envelope" and set a length of 100 units. In the second we can change the
graphical appearance and the range of the X and Y axes. In this case, set the X range to "0 to 99", and the Y

Complex Envelope Generator Using [vline~] 101

range to "1 to 0". The size can be anything that is convenient, and is measured in pixels. You can get these
Properties dialogs back by Right-clicking or CTL+clicking on the Array. These dialogs appear under the
screenshot below.

To read a table, we can use the object [tabread]. The [tabread] object takes a creation argument of the name of
the table it is supposed to read. In order to draw inside the table, you should click on the line and drag with
the mouse. A value sent to the inlet of [tabread] represents a point on the X axis, and the output is the
corresponding value on the Y axis.

If we want to read a table continuously from start to finish, we can use [line] to send a continuous stream of
numbers to [tabread], starting with the first position on the X axis of the table ("0"), and ending with the last
position ("99"). Remember that [line] takes a pair of numbers, the target ("99", the end of the table) and the
time it takes to get there (4000 milliseconds, or 4 seconds). When we want to start over from the beginning of
the table, we send a single number, "0", and the [line] object jumps back to it.

In the example below, [tabread] gets values between 0-1 from the table "pitch_envelope". We multiply these
numbers by 127 with a [*] (Multiplication) object, to get a MIDI note value between 0-127. After that, we use
a [mtof] (MIDI to Frequency) object to convert the MIDI notes into a frequency in Hertz. The frequency is
sent to a sine wave oscillator [osc~] object, which sends audio to the [dac~] (Digital to Analog Converter),
Pd's connection to the soundcard.

Envelopes Stored In Arrays 102

Envelopes Stored In Arrays 103

The Amplifier
The next step in our synthesizer is to create the audio amplifier, which will change the gain of the signal.
Whatever method you use to create your envelope, if you are using it to control the amplitude of a signal you
will want to make sure the output is an audio signal as well. This is done to avoid clicks in the audio.

Using a Slider

In the two examples below, an audio signal from the Sine Wave Oscillator [osc~] is being changed manually,
via a slider, in the same way as the Volume knob on your home stereo might work. In the first example, the
numbers from the slider, which go from 0-127, are divided by 127 with a Division [/] object, to get them
within the range of 0-1. These numbers are sent directly to the right inlet of the Audio Multiplication [*~]
object, so that every audio sample coming from the [osc~] is multiplied by a number between 0-1. This will
reduce the volume of each sample. "0" means no sound, "1" means full volume. However, these changes in
volume will have clicks in them, as each number from the slider is sent to the [*~].

Using [line~], [vline~] and [tabread4~]

In the second example, the numbers from the slider are sent to an Audio Ramp object [line~], after being
packed together into a message by [pack] with the number 50. What this message, which might appear as
"0.76 50" for example, tells line is that it should ramp to the next number in 50 milliseconds. This is known as
Interpolation, which is to smoothly transition from one value to another by providing (or guessing) all the
values in between. Since the [line~] object is an audio object, the signal it sends out should cleanly control the
volume of the audio signal.

The Amplifier 104

If you use [line] to make your envelope, you can make an audio signal by using the audio object [line~]
instead.

[vline~] outputs an audio signal already.

And to read a table and get an audio signal out, the [tabread4~] object is useful. Note that [tabread4~]
responds better when controlled with an audio signal as well, so [line~] is used instead of [line].

Using [line~], [vline~] and [tabread4~] 105

Controlling the Synthesizer
Reviewing what we've covered in this tutorial, we can see that all the building blocks of a simple synthesizer
are present.

We have various Oscillators to generate the tones. Then there are Low Frequency Oscillators, which provide
the possibility to modulate either the frequency or gain of the Oscillator(s), or the frequency of a Filter. There
are also different types of Filters, which emphasizes and/or removes certain frequencies. Envelope Generators
control changes in frequency or gain over time, and Amplifiers control the final gain of the synthesizer.

The way each of these elements are put together gives the final definition to the sound and functionality of
your synthesizer. And there are an almost infinite number of was to do this! In the following examples, we'll
look at some simple ways to combine the different elements of a basic synthesizer with ways of controlling it,
either from the computer keyboard, a MIDI keyboard or a 16 step sequencer which we will build.

Input from the Computer Keyboard

To get a very crude input from the computer keyboard, we can use the objects [key] and [keyup]. Each key on
the computer keyboard has what is called an ASCII value, which is a number used to represent that key. [key]
outputs this number when a key is pressed, and [keyup] sends this number when a key is released. Like MIDI
Notes, these numbers are within the range of 0 to 127. However, the layout of these ASCII values on the
computer keyboard is far from musical! But they are a good way to get some immediate input into a patch,
and later on [key] and [keyup] can used to trigger different elements of a Pd patch besides musical notes.

In the following patch, the ASCII values of the computer keyboard are treated as MIDI notes and control the
frequency and volume of a Sine Wave Oscillator. We will use [line~] as a simple Attack/Decay Envelope
Generator here, to make the envelope of the note smooth and to avoid clicks.

When a key is pressed, [key] sends the ASCII value, which becomes a frequency through [mtof] and controls
the [osc~]. At the same time, when the key is pressed, the output of [key] is converted to a "bang", which
triggers the message "1" to be sent to [pack]. In [pack], this "1" is packed together with "50" to make a
message which says "1 50". [line~] interprets the message "0 50" to mean "ramp to 1 in 50 milliseconds". This
will smoothly ramp the audio signal from the [osc~] up to full volume.

When a key is released, then [keyup] will send a number out as well. We will convert this to a "bang", which
sends the message "0" to [pack]. [pack] then makes the message "0 50" and sends it to [line~], and [line~] will
ramp back down to 0 in 50 milliseconds.

Controlling the Synthesizer 106

Input from a MIDI Keyboard

This task is made simpler (and more musical!) with the addition of a MIDI keyboard. Make sure you have
selected the proper MIDI input device in your Preferences (see Configuring Pd for more details). The [notein]
object receives the MIDI Note and Velocity information from the MIDI keyboard. Because usually you will
want to listen to the first MIDI keyboard you plug in, we give [notein] a creation argument of "1", thus [notein
1] will receive MIDI Notes on MIDI Channel 1. The MIDI Note played will come out the left outlet, and the
Velocity (how hard the key is pressed) will come out the right outlet.

The MIDI Note we send to an [mtof], which converts it to a frequency and sends it to the [osc~]. The Velocity
we divide by 127 to get a value between 0 and 1. This value gets [pack]ed together with 50, and sent to the
[line~] object, which we will use again as an Attack Decay Envelope Generator. [line~] makes a 50
millisecond audio ramp, either to "0" when the MIDI key is released and the Velocity is "0", or to a value
between 0 and 1 when the MIDI key is pressed, depending on how hard it has been pressed. [line~] sends an
audio ramp to the Audio Multiplier [*~], which smoothly changes the volume of the audio signal form the
[osc~].

Input from the Computer Keyboard 107

Input from a MIDI Keyboard 108

Building a 16-Step Sequencer
Besides using a keyboard, another way to control a synthesizer is with a Sequencer, which stores MIDI Notes
and plays them back in sequence, and at a speed which can be changed from faster to slower.

A Counter

Before we can build the note-storing section of the Sequencer, however, we have to learn a little bit about
dataflow in Pd in order to make a counter. This counter will count from 0 to 15, and each number it sends out
will trigger one of the steps in a 16-Step Sequencer.

The patch below shows a counter, built with basic Pd objects.

[metro] is used to send the message "bang" every so many milliseconds. This interval is set by a Number sent
to the right inlet. The [metro] is turned on and off by sending either a "1" or a "0" to the left inlet. We use the
[toggle] object to send these messages.

Hot and Cold

Below the [metro] is a construction which takes advantage of one of the most fundamental lessons in learning
about dataflow in Pd: "hot" and "cold" inlets. The left-most inlet of almost any non-audio Pd object is called
the "hot" inlet. Any input to the hot inlet of an object gives immediate output. Any other inlet to the right of
the hot inlet is called a "cold" inlet. Input to a cold inlet is stored in the object, waiting for input on the hot
side. In this case, when a new number comes to the hot side of the [*], it is multiplied by the number stored in
the cold side. The information in the cold inlets is kept there until new information received at that inlet
changes it, or until the object is re-created (by retyping its name, cutting/pasting the object or by reopening the
patch).

Building a 16-Step Sequencer 109

So in our counter, there is an object called [float], which stores and outputs a Floating Point Number.
Floating Point Number is another name for a number with a decimal place, usually called simply a "float".
The opposite of a "float" is an Integer, or "int", which has no decimal place. All numbers in Pd are assumed to
be floats. When [float] receives a "bang" to its left ("hot") inlet, it outputs the float which is stored on it's right
("cold") inlet. When this [float] outputs a number, it is also sent to the inlet of a [+ 1] object, where 1 is added
to that number and sent back to the "cold" inlet of [float] to wait for the next "bang". So, every time this
construction receives a "bang", the number it will output will be 1 more than before.

For more information on "hot" and "cold", as well as other descriptions of how to get used to how dataflow
works in Pd, please see the Dataflow Tutorials in this FLOSS Manual.

The numbers sent from our counter will increase endlessly. In order to keep them within the bounds of our
16-Step Sequencer, we need a way to "wrap" these numbers around so that they start over when the counter
reaches 16, and every other division of 16 that comes later on. [mod] is the object which does this.
Technically, [mod] means "modulo", and it outputs the remainder of a division operation using the number in
the creation argument. Thus "16" becomes "0", "17" becomes "1", "18" becomes "2" and so on.

Storing and Retrieving MIDI Note Values

In the next patch, we see how to store and recall a number from an [hslider] using the [float] object as well.
Here, [float] has been abbreviated to the commonly used [f]. At the bottom of our counter construction from
the previous example, we have replace the Number with an [hradio] array of buttons, so that we can see which
step of our Sequencer we are at. (Right or Control+Click on the [hradio] to see its properties, and type "16" in
the "number" field to set the size.)

Below the counter we have the object [select]. This object checks the input on its left inlet against either the

Hot and Cold 110

input on the right inlet, or in this case against a series of creation arguments. When the input on the left
matches one of the creation arguments, then the message "bang" comes out of the corresponding outlet. Thus,
an input of "0" will send a "bang" out the first outlet, an input of "1" sends a"bang" out the second outlet, etc
etc. In this way, we have a separate "bang" for each step in the Sequencer.

For each step in the Sequencer, we will use a [f] object to store a MIDI Note send from a [vslider]. The range
of the [vslider] is 0-127, and the number it outputs is sent to the "cold" inlet of [f], to wait for a "bang" to
come to the "hot" inlet. When that "bang" comes, the MIDI Note is sent out. You can change the value of the
[vslider] with the mouse at any time, and the MIDI note will only be sent at step 0 of the sequence.

The Finished 16-Step Sequencer Patch

And here we have the finished patch, with all 16 steps included, connected to a simple synthesizer. Each step
of the sequence sends a MIDI Note to [mtof], which controls the frequency of a [phasor~] as well as the
frequency of a Band Pass Filter [bp~]. The creation arguments of the [bp~] set it's starting frequency as 220
Hz, but this is changed every time it receives a new number from the [mtof], which has been multiplied by 1.5
to make the center frequency of the filter a half octave above that of the Sawtooth Oscillator [phasor~]. The
resonance is set very high, at "5", so the harsh sound of the [phasor~] is softened.

Storing and Retrieving MIDI Note Values 111

In this version, no Envelope Generator is used, so the volume of the audio going to the soundcard remains
constant. This leads to noticeable clicks when the frequencies of the MIDI Notes change. An Envelope
Generator based on [line~], [vline~] or [tabread4~] could be inserted between the output of [bp~] and the
[dac~] if desired.

The Finished 16-Step Sequencer Patch 112

A Four Stage Filtered Additive Synthesizer
Our final example shows all the different elements of a simple synthesizer combined together into an
instrument which can be played by the computer keyboard using [key]. It has four distinct sections:

The INPUT STAGE: where note information is received and sent to the other stages.•
The OSCILLATOR STAGE: where the notes received from the INPUT STAGE are converted to
frequencies which control two detuned Sawtooth Oscillators.

•

The FILTER STAGE: where notes received from the INPUT STAGE are turned into an audio signal
which sweeps a Voltage Controlled Filter, and where the audio signal from the OSCILLATOR
STAGE is filtered.

•

And the AMP STAGE: where the "bang" at the start of every note from the INPUT STAGE is used to
trigger a message to the [vline~] Envelope Generator, which smoothly changes the volume of the
audio from the FILTER STAGE.

•

The Input Stage

At the INPUT STAGE, we use the [key] object to get the ASCII values of the computer keys being pressed.
This information is passed to the [trigger] object. [trigger] is a very important Pd object used to specify the
order in which events happen.

What [trigger] does depends entirely on its creation arguments. When it receives any input, [trigger] sends
messages to its output in a right to left order, based on these creation arguments. In this case, our [trigger] has
the creation arguments "float", "float" and "bang". So on any input from [key], which sends a Floating Point
Number (a "float"), [trigger] will first send the message "bang" out its right-most outlet, which will go the
AMP STAGE. The it will send that float which came in to the center outlet, which will go to the FILTER
STAGE. And finally it will send that float to the left-most outlet, which will go the OSCILLATOR STAGE.
[trigger] is often abbreviated as [t], so the [trigger] in this example could also be typed as [t f f b].

A Four Stage Filtered Additive Synthesizer 113

For more information on [trigger], please see the Dataflow Tutorials in this FLOSS Manual.

The Oscillator Stage

This stage is concerned only with the Additive Synthesis of two detuned Sawtooth Oscillators. This means
that the output of two [phasor~] objects, whose frequencies are slightly different from each other, will be
added together. Since the difference in frequency is quite small (one [phasor~]'s frequency is 99% of the
other's), instead of hearing two tones we will hear a periodic modulation of one tone.

The float from the [trigger] in the INPUT STAGE arrives at an [mtof] object, which converts it to a frequency
in Hertz. This frequency is sent immediately to one [phasor~], and also to a Multiplication [*] object, which
makes a new frequency number which is 99% of the other, and this new scaled frequency is sent to a second
[phasor~].

The audio output of the two [phasor~] objects is added together in an Audio Multiplier [*~] object, which
reduces the overall volume by 50% to prevent clipping when it reaches the soundcard. The resulting audio
signal is sent to the FILTER STAGE.

The Filter Stage

The FILTER STAGE is responsible for taking the audio from the OSCILLATOR STAGE and applying a
swept Voltage Controlled Filter [vcf~] object to that signal. The center frequency of the [vcf~] is also
determined by the key which has been pressed on the keyboard.

When the float sent by [trigger] from the INPUT STAGE reaches this stage, it is converted into a frequency
number by [mtof]. This number is multiplied by 1.5 so that the center frequency of [vcf~] is a half octave
above that of the Sawtooth Oscillators. The number from [mtof] is [pack]ed together with 300 and sent to a
[line~] object. This message tells [line~] to ramp to any new number it receives in 300 milliseconds.

The audio ramp from [line~] is used to control the center frequency of the [vcf~] object. The result is that the
[vcf~] will not jump to any new frequency it receives, but it will smoothly ramp there over 300 milliseconds,
resulting in the distinctive "filter sweep" sound.

The audio leaving the Voltage Controlled Filter is now sent to the AMP STAGE.

The Amp Stage

This final stage controls the overall volume of each note played by this synthesizer. It uses a [vline~] object as
a complex Envelope Generator.

Every time a key on the keyboard is pressed, the [trigger] object in the INPUT STAGE sends the message
"bang" to the AMP STAGE. Here it triggers the message "1 150, 0.9 150 150, 0 1000 500", which is sent to
the [vline~] and tells [vline~] to make this audio ramp.

The exact instructions the message tells [vline~] are as follows:

First ramp to 1 in 150ms•
Then ramp down to 0.9 in 150ms after a delay of 150ms from the start of the complex ramp.•
After that, ramp down to 0 in 1000ms after a delay of 500ms from the start of the complex ramp•

This translates to:

Attack: 150ms•

The Input Stage 114

Decay: 150ms to a value of 0.9 •
Sustain: 200ms (the 500ms of the last ramp minus the 300ms of the first two ramps equals a "rest
period" of 200ms)

•

Release: 1000ms•

With these instructions, [vline~] creates an audio ramp which smoothly controls the overall volume of the
audio coming from the FILTER SECTION via an Audio Multiplication [*~] object.

Subpatches

Now that we have an instrument that is separated into four distinct stages, we may want to make the screen a
bit easier to look at by putting each stage inside its own Subpatch.

A Subpatch is simply a visual container which objects can be placed in to get them out of the way. To create a
Subpatch in a Pd patch, simply create an object named [pd mysubpatch], where "mysubpatch" can be any
name you choose. A new empty patch window opens up and you can cut or copy and paste the objects you
want to place in the Subpatch inside this new window. When you close the window, the objects will be inside
this Subpatch, still functioning as normal.

To get information in and out of a Subpatch, you can use the objects [inlet] and [outlet] for numbers and other
messages, and the objects [inlet~] and [outlet~] for audio. This will create inlets and outlets in the Subpatch in
the main patch you are working in, that you can connect as normal. You can give a creation argument to each
inlet or outlet, which could be a reminder of what is supposed to come in our out of that inlet or outlet
("midi_note", "start_trigger", "audio_from_filter", etc etc).

Here is our Four Stage Subtractive Filtered Synthesizer, with each stage inside it's own Subpatch.

The Amp Stage 115

Subpatches 116

Subpatches 117

Dataflow Tutorials
While a Pd user (which is, lovingly enough, a Pd programmer at the same time) can learn how to use it just by
playing around and trying new things, there are important functions that are not immediately apparent through
play, trial and error.

The following tutorials try to explain and practically demonstrate in quick simple way some of the more
important 'grammatical' aspects of this graphical programming environment.

All examples in the tutorials are available as Pd patches. It is recommended to download them and try them
out while reading the tutorial. Get the zip here:
http://en.flossmanuals.net/floss/pub/PureData/DataFlow/DataFlowTut_patches.zip

These tutorials can be used in two ways:

they can be followed from start to finish1.
they can be accessed also as a reference2.

So if something is too obvious to the reader, she can skip a section or two (or just check the screenshots).

Dataflow Tutorials 118

http://en.flossmanuals.net/floss/pub/PureData/DataFlow/DataFlowTut_patches.zip

Messages
Pd's objects intercommunicate using messages. Data is sent from outlets, travels along the connections and is
received in the inlets of objects in the patch and it is understood or decoded by objects in a specific way. Apart
from audio signals all other data are messages. Pd messages can be of different types, such as:

numbers - also known as floats (floating point numbers)•
symbols - a word or a mixture of letters and numbers•
lists - groups of numbers and/or symbols•
pointers - pointer data for data structure objects•

Message Boxes

Messages can go between objects directly - as they do in the bottom two rows of each group -, or be sent (or
go through, as we'll see later) message boxes. Message boxes allow the user to see directly which elements
are being sent.

A message box with several elements is a list. But in case there is a comma between these elements, it
becomes several messages, which are sent one immediately after the other. The comma breaks the message,
creating a new instance.

You can also send messages to receive objects (or to the Pd engine) by writing a receive symbol, the message,
and a semicolon in the end. This technique is usually used to initate several parameters simultaneously.

Messages 119

Packing elements and variables

You can create more complex messages by joining several elements together - the most current object for that
is [pack]. You can create lists by joining several elements: either only numbers, or mixing numbers with
symbols.

If you want to work with a list combining fixed and variable elements, replace the variable ones with
dollarsign variables. These will take on the parameters from the message that arrives to them. $1 will take the
first element, $2 the second, and so on. In case you send only a number or a symbol, they will be considered
to be a list with only one element.

And combining the power of [pack] with variables, it's possbile to build complex commands for your patches:

Deconstructing messages: unpack and route

After you've built and formatted the commands you need, in the next part of your patch you can decide where
to send them. First we can look at [pack]'s evil twin, [unpack]. As the name says, [unpack] separates a list into
it's individual elements. This can be useful after you created your list command, to distribute it into the several
parts of your synthetizer patch. Be sure to match the creation parameters with the format of the list you're
expecting to receive.

Message Boxes 120

Besides deconstructing your messages, you can also sort them qualitatively, through string comparison. For
that we use [route]. With [route] you can send different elements to the same input, and sort them out quite
easily. For example through data types - bangs, floats, symbols, lists, or something else:

But making groups (or lists) of strings and parameters is the most popular way of using [route]. You can use
the strings as filters to channel parameters to specific places:

Of course, the strings that channel (or "route") the parameters can also be numbers themselves.

Deconstructing messages: unpack and route 121

Or, if you don't use any parameters, you can use it just to trigger events. In this case, the output of each route
string is only a bang.

And the grand finale: combine all objects (and variables) to create your own complex commands, and
distribute them through the elements of your instruments - all in the same patch:

Deconstructing messages: unpack and route 122

Deconstructing messages: unpack and route 123

Math
In order to work your data, using mathematical functions is essential to produce something in Pd. Numerical
values can be mathematically manipulated with numerous arithmetic objects. These are divided into sections,
according to their function:

[+] [-] [*] [/] [pow] simple arithmetic
[sqrt] [log] [exp] [abs] higher math
[sin] [cos] [tan] [atan] [atan2] trigonometry
[mod] [div] fraction work
[max] [min] [clip] [moses] numbers and ranges
[random] lower math
[==] [!=] [>] [<] [>=] [<=] relational operators
[mtof] [ftom] [powtodb] [rmstodb] [dbtopow] [dbtorms] convert acoustical units
[&] [&&] [|] [||] [%] bit twiddling

Simple arithmetic

This section deals with basic mathematical functions:

[+] - plus•
[-] - minus•
[*] - multiply•
[/] - divide•
[pow] - power•

Each math object does one operation only, taking usually two parameters for it. For example, if you want to
sum 2 + 3 + 4, you need to create the necessary objects in a chain - because in reality you are doing two
operations.

Don't forget that Pd differentiates between left inlets - the hot inlets - and other inlets - the cold inlets. So if
you want to make your operation sucessfully, you must first get the right number in, and only afterwards the
left number.

Math 124

So, if you have an operation where you know that one of the numbers is going to be stable, you should
connect that number to a cold inlet - in case the numbers can be changed and the operation still makes sense,
of course.

Or you can use the second number as a parameter of your object. In case you don't have any parameter it's like
having 0 as a parameter (which was what happened in the previous examples). In case you put in a new
number, the second parameter will be actualized.

I guess it isn't necessary to explain how [+], [-], [*] and [/] work. But for the other objects some words will be
necessary. [pow] is a basic exponentiation operation, but with some perks to it. First, you can't input any
negative base numbers (the left input). And second, you can use negative exponents (right input).

Higher math

Here are introduced some objects that are often used in mathematics:

[sqrt] to take the square root of a number (no negative numbers allowed)•
[abs] for the absolute value of a number (turns negative numbers into positive numbers)•
[log] and [exp] are the normal functions already known in math•

Trigonometry

The objects here relate mainly to trigonometry, and they work the same way already explained for the
previous objects. In case you need any information about trigonometry, we suggest to look for a more specific
manual. Only one detail: there is no symbolic definition of Pi, so in case you need it, you'll have to type the
numeric value as precise as necessary.

Simple arithmetic 125

Fraction work

With [mod] and [div] you can notice if a fraction produces a remainder and what that remainder is. [div] gives
the result of a division without any decimal numbers. [mod] does the opposite, produces the remainder of a
division. Note that these objects only work with integer numbers.

Although the explanation before might seem to be a bit dry, these objects are quite useful if you want to build
a step sequencer. Combining [div] and [mod] you can control higher group orders of numbers, creating bars
and beats. For example:

In this patch [div 4] divides the total beat count by 4 without any remainder, producing the bar number. [mod
4] shows only the remainder of the same division, which in turn is the beat number. Note that the original
results vary between 0 and 3 - but it makes more sense to us to see numbers between 1 and 4, so we add 1 to
them.

Numbers and ranges

It can be important to know how to make number streams fit certain ranges. For that there are several choices
around. The most simple operations imply limiting a range on the upper or lower side. For that you can use
[min] or [max], respectively.

Of course, you can change the parameter at any time, by sending a new value to the right side input. Note also
that these objects output a number even if the output doesn't change.

[clip] acts as a mixture of both [max] and [min]. You just define the range boundaries.

Fraction work 126

Another much used object is [moses]. This one doesn't limits the range, but distributes it through it's outlets -
a bit like we already saw with [route]. For example, if we wanted to divide between positive and negative
numbers, we would have to use only [moses 0]:

This can be quite useful to distribute numbers around several inputs - imagine you have an instrument which
plays midi notes up to 60, and another for the higher tones...

Random numbers

Random numbers are quite important in electronic music. Whenever you want to add some imprevisibility to
your patches, you'll need someone else to make decisions for you. For that you can use objects like [random]
or [shuffle] to generate numbers for you according to certain rules. These numbers are never completely
random, as there is always a certain logic to how they work. But they do feel random, as the repetition pattern
is too large for a human to grasp.

[random] is Pd's standard integer generator. What is makes is that if produces a "random" number between 0
and X-1, being X the generation parameter you give to the object (or feed it on the right side). Each time
[random] gets banged, it produces any number in range. Here is a sequence of random numbers with
[random]:

A quite similar object is [shuffle], a Pd-Extended object. It works on the same way (except that you define the
range yourself), but with one big difference: it keeps the numbers in memory, so that no number is repeated
until the whole sequence has been gone through. This can make a big difference, for example, if you're
playing back random samples, and want them to repeat more or less often. These are two nuber sequences
where all possible numbers have been generated.

Numbers and ranges 127

Relational operators

At some point while programming you'll need to compare values to judge situations. Pd offers the normal
logical operations that you surealy already know. These objects produce an answer in binay form: 1 for yes
and 0 for no.

Conversion between acoustical units

Another set of very useful objects is the next group, which makes conversions between the realms of
acoustics. Of course it would be possible to program these objects yourself, as long as you know the formula.
But since they're quite used, it makes much more sense to have them around ready to use.

[mtof] transposes from midi pitch into frequency in Hertz. A good reference point is the central C at 60, or the
440Hz central A at 69 - after that add or subtract 12 (semitones) for each octave. Obviously, [ftom] does the
inverse operation. By the way, you can also use float numbers - which would produce a microtonal scale.

[dbtorms] converts from decibels to linear RMS amplitude, so that 100 dB corresponds to an RMS of 1 Zero
amplitude. [rmstodb] takes over the inverse operation.

And [dbtopow] converts from decibels to power units, that is, the square of the RMS scale.

Random numbers 128

Bit twiddling

aa

Expr

aa

Audio math

aa

Conversion between acoustical units 129

Lists
First, download the patches for this chapter: Lists.pd.zip

Often you want to group numbers together into a single message so that an object can respond to multiple
things at once. For example if you want to turn on and off notes in a musical synthesizer, then you could make
a list of two numbers that includes the frequency and the amplitude as a single message. In Pd, "list" has a
special meaning, it is a specific way of collecting data into a single message. The simplest kinds of lists are
made up of collections of numbers.

For many math objects, you can use a list as a shortcut for sending data to each inlet. With an object like [+],
you can send a list of two floats to the left inlet, and [+] will interpret the second, rightmost number in the left
as if it was sent to the right inlet, and the first, leftmost number as if it was sent to the left inlet.

A list can also include symbols, but if the symbol is the first element, it can get a bit tricky. Pd classifies the
basic chunks of data for you. A float is any single chunk of data that can be interpreted as a number, and a
symbol is any single chunk of data that cannot be interpreted as a number. Pd also classifies messages as lists
based on similar rules. As long as the first element is a number, Pd will recognize the message as a list. If you
want to make a list that has a symbol as the first element, then you need to tell Pd that it is a list by starting the
message with the "list" selector.

Lists can used for processing collections of data. Once the data is organizing into lists, then it is much easier
to sort the data and route it to the places it needs to go. There are a number of objects that output a range of
different kinds of data, so they need to use lists instead of specific outlets.

Lists 130

http://en.flossmanuals.net/floss/pub/PureData/Lists/Lists.pd.zip

Order of Operations
The order of actions in Pd is determined by rules covering :

hot and cold inlets1.
order of connecting2.
depth first message passing3.

The application of these concepts appears constantly in Pd code.

Hot and Cold Inlets

The order in which inlets are triggered is largely ruled by the concept of 'hot and cold inlets'. The leftmost
inlet of any object is always a hot inlet. Whatever an object receives to the hot inlet will trigger the object and
create an output.

All other inlets are cold inlets. Whatever the object receives to them, it stores as a value, but does not output
anything. This can be seen at work with a simple counter example:

A "bang" to a hot inlet is a special message that causes an object to process and produce output using
previously initialized or set values.

In the above example, the following occurs :

the cold (right) inlet of the float object stores the result from the addition object [+1]•
the float object does not output before it receives anything at hot (left) inlet.•
when sent a "bang" message, the float object sends a value and a 1 is added in the [+ 1] object•
 the result of the [+1] object is sent to the cold inlet of [float]•
because it's a cold inlet - this value is stored until the next bang. This is why above construction does
not produce an endless loop (and crashes your Pd session or report stack overflow) unlike an example
below:

•

Order of Operations 131

Note : If there is no value for the object the default values will be output, for example a float object will
output 0 if no value was set.

Order of Connecting

While multiple incoming connections to the same inlet are rarely problematic, care has to be taken in when :

the order of operations is important1.
making multiple outgoing connections from a single outlet2.

The order of events is determined by the order in which the inlet connections were made.

Note : Since Pd does not illustrate the order of events it is not easily known by looking at the patch itself.

Trigger

Trigger is a very useful object for managing the order of events. Trigger takes an incoming value, converts it
according to its arguments, and outputs the new values through its outlets in order from right to left.

Below you can see Trigger in action.

Note : you can use 't' instead of 'trigger' when creating the object.

Depth first message passing

There is one more rule of Pure Data programming that is important when scheduling events - 'depth first
message passing'.

This rule states that at a forking point (as in a trigger object, or multiple connections from a single outlet) a
single scheduled action is not "finished" until its whole underlying tree is "done".

Consider this simple example. Try following with your finger the path remembering that the trigger's right to
left order and depth first rule:

Hot and Cold Inlets 132

The resulting number will be always the same as the input number as the scheduling logic is taken care of
according to rules we defined so far.

Consider again the wrongly connected counter example that can crash your Pd session (or report stack
overflow) because of infinite loop:

From the point of view of depth, the above example represents infinite depth - the message passing is never
finished.

Depth first message passing 133

Wireless Connections
Soon after some introductory patching, a Pd user will soon discover the slight inconvenience of connection
lines running over objects to reach other objects. Luckily, there's a solution.

Using the send and receive objects data can be sent from one part of the patch to another without connecting
lines. These objects can also send data to other windows. The send and receive objects need an argument to
identify each other. This argument is usually in the form of a word.

In the above example, [metro 1500] generates bangs at the interval of 1.5 second (1500ms) and is sending the
data to the [send beat] object. This in turn sends the data to the [receive beat] object.

A single send object can be received by multiple receive objects.

The bangs in the above example are picked up by each [receive beat] object because they all have the same
argument - "beat". There is no limit to the number of sends and receives with same argument. It is possible to
have many sends. Just add to the example above more [metro] objects:

Wireless Connections 134

What kind of data can be sent?

[send] and [receive] are for control data - messages, symbols, lists. For audio signals a 'tilde' version of these
objects are needed. [send~] and [receive~] can be used to receive a single audio signal at many places.

This example shows audio sends used to create a multitap delay:

Throw and Catch

In the above example you may notice that outputs from delay lines are not sent with [send~] back to [r~ out].
Audio signals can only have one [send~] but many [receive~]. While there are technical reasons for this
difference, a handy pair of audio objects that can help to achieve many-to-one sends are [throw~] and
[catch~]. Many [throw~]s can send audio signals to one [catch~].

What kind of data can be sent? 135

Using [catch~] it is possible to further control and process audio (i.e.: volume control, VU metering, limiting,
reverbs, etc...).

Coincidentally, all objects we described above ([send], [receive], [send~], [receive~], [throw~], [catch~], as
well as [delwrite~] and [delread~]) all work across different patches, subpatches and abstractions.

In conclusion, the objects described above are powerful tools to not only send and copy data and audio
around a single patch without messy connections, but to create connections between individual patches,
subpatches and abstractions.

A word of warning though: the arguments passed to these objects are always global - they are accessible from
all patches and abstractions opened in a single Pd session. This simply means that a situation can arise with
unwanted 'crosstalk' of data or multiplies defined. Care has to be taken on names of arguments, while at the
same time a technique exists to localize arguments using dollarsigns.

Throw and Catch 136

Subpatches
With more complex coding, patches can become large and difficult to manage. Subpatches help resolve this
problem.

It is useful to think of subpatches as container or drawers, where code is organized and stored. A subpatch is
created by typing "pd" into an object box followed by any an arbitrary word. When creating a subpatch like
this, a new empty subpatch window will appear and you can put code in this window.

Subpatches 137

Subpatch Inlets and Outlets

Subpatches can have inlets and outlets. These are created by using the inlet and outlet objects (and inlet~ or
outlet~ for audio signals).

When you create inlets and outlets note that the origial subpatch object also gains inlets and outlets.

Subpatch Inlets and Outlets 138

Closing and Reusing Subpatches

When closing subpatch windows the code is not lost but still exists and works. Subpatch windows can be
reopened by left-clicking on subpatch objects or by right-clicking and choosing "Open" from menu.

Subpatch objects can be freely copied and each copy can be individually edited - changes are not reflected in
any other subpatches, even if they have the same name.

Closing and Reusing Subpatches 139

Abstractions
Subpatches are useful to clear code from the main canvas. However, sometimes precisely the same code is
used again and again, in which case it isn't convenient to create copies of subpatches. In these cases it is much
more useful to call an external patch directly. This kind of patch is known as an abstraction.

Consider a situation where a random note on minor C scale converted to frequency is needed multiple times in
one patch. A basic construct for this would be:

Every time [random] is banged, one of the displayed numbers will be transposed + 50 and through [mtof]
converted to frequency. It's a construct that's inconvenient to reproduce many times in a patch. The abstraction
is a separate patch with inlet's and outlets and saved separately.

Saving Abstractions

The abstraction needs to be saved on a path (folder) that Pd looks into each time an object is created. That
path (folder) can be defined in Pd preferences however its simpler to have the abstraction in the same folder
where the patch that calls it is saved.

Abstractions 140

Calling and Editing Abstractions

Consider a main patch "cminor-oscilations.pd" saved in /home/user/puredata/ and "cminor.pd" in the same
folder. The abstraction (or an instance of it) is called simply by typing the name of the patch (without
extension .pd) into an object box.

By clicking on the [cminor] (or right-clicking and choosing "open") the abstraction is opened in new window,
just like a subpatch. However now a separate patch (cminor.pd) is being edited. This means when changes are
saved all instances in the calling patch are updated.

Calling and Editing Abstractions 141

Dollarsigns
In the same way as objects like [metro], [random] or [osc~] can (and need) to accept arguments (as in [metro
1000]) an abstraction can accept arguments that can be used inside of it. Consider an abstraction that
combines [metro] and [random] objects to produce random numbers that also denote time intervals at which
the are produced. In its basic form it could look like this:

The abstraction above has two inlets, at left it would receive on/off (1/0 float) input and at right the range for
the [random] which will then pass random numbers to [metro] and at abstraction's outlet. As it can be seen,
the abstraction will initialize with 1000ms to [metro] object and range from 0 to 1000 to [random] object. To
change the value of random object dynamically that value will have to be send at abstraction right inlet.
However, this can be done differently by passing arguments to the abstraction at the creation time using
dollarsigns inside the abstraction. Consider this change including demonstration of usage:

At the creation time two arguments are passed to an abstraction [randometro1]. Inside the abstraction, $1 is
substituted with the first argument, and $2 with the second. The effect (which was goal in the first place) is to
be able to define the min-max range (as opposed to only 0-max) at which abstraction works. Because
[random] inside the object needs a 0-max range, first argument (presumably smaller) is subtracted from the
second. The result is passed to random to produce random numbers which are then added to the first
argument. In demonstration of usage in the window behind the abstraction this construct produces random
numbers between 1000 and 1100 in the first case, and 500 and 600 in the second.

While $1, $2, ... and so on represent first, second, etc .. argument to the abstraction, there is one special
dollarsign that is in Pure Data extremely useful. $0 is a variable that is internally substituted by unique
four-digit number per patch or instance of abstraction. In other words, Pd takes care that each instance of an
abstraction or patch will be assigned this unique number and stored in $0 variable. The usefulness of this is
immediately apparent in the following example of simple delay abstraction where delay-lines with the same

Dollarsigns 142

name in multiple instances of same abstraction must be avoided:

It is important to understand that, despite $0 isn't actually substituted with the unique number inside the
delwrite~ object, the latter actually writes audio signal to delay-line named "1026-dline". $0 variable is
assigned in every opened or called patch, which also solves the problem of two or more instances of same
patch (i.e.: simple synth). $0 also saves from situations from unwanted crosstalk of frequently used variables
in different patches. An attentive reader/user could also point out a possibility to use $1, to use an argument
passed to an abstraction (like "one" and "two" in above example), in which case care must be still taken to
assign unique arguments to abstractions used in the same Pd session.

$0 is at times called localized variable, however, in my view, that is not entirely true. A variable constructed
with $0-something can still be accessed from the global namespace by simply finding that unique number and
than calling that appropriate variable (like for example to read the delay-line named 1026-dline from above
example from within another independent patch). In fact this can sometimes be even useful. It is however true
that using dollar variables is a localization technique.

A frequent confusion arrises from the use of dollarsigns in message boxes. It is important to understand that
dollar variables in message boxes are actually totally local to that message box itself regardless where they
appear. They will be substituted only by what a message box receives on its inlet. In an example of abstraction
within which both types of dollar variables are used:

Dollarsigns 143

[shotline] abstraction, which has a goal of producing a ramp of values in specified time from some starting
value to ending value, takes three arguments - speed, from-value and end-value. These variables are accessed
inside the abstraction with $1, $2 and $3 in the [pack object]. The latter sends a list of those three arguments
to message box, in which $1, $2 and $3 represent only elements of an incoming list and not directly
arguments of the abstraction. Message box first send the second element, followed by a comma - so it resets
line to that value, and then a pair of third and first element which correspond to target value and time-frame of
a ramp.

Dollarsigns 144

Graph on Parent
In Pure Data it is extremely easy to create interfaces that include sliders, buttons, number boxes, toggles,
colored backgrounds... to see how to use them, look at the "GUI objects", or simply right-click on one of them
and choose 'help'.

However, they still need to be connected and to use them away from the data inlets that they control, they
have to be repeatedly created in order to function the way we want. Consider an example of a delay
abstraction (already used above) that takes at it's second inlet a value for time of delay which we want to
control with a slider:

So, every time when an abstraction like that is created, when it is desired to be controled by a slider, many
steps are needed to recreate the same visual and programmatic construct. Luckily, there is a very powerful
feature of Pd: graph-on-parent. It enables a subpatch or an abstraction to have a custom appearance at the
parent 'calling' patch.

Instead of plain object box with the name of abstraction and arguments, it can have different size, colour, and
all the gui object inside. Here's how it's done, continuing on delay: inside the abstraction or subpatch,
rightclick on white underlying canvas and choose properties. Inside a dialog that appears, enable toggle for

graph-on-parent:

Graph on Parent 145

Applying this will create a grey-bordered box within the abstraction. This box represents the shape and form
of the abstraction on the parent canvas (the calling patch). Whatever the size and contents of that grey box will
be visible excluding connections, object boxes and message boxes. In the properties of the abstraction below
the graph-on-parent option two rows of four values represent X and Y settings. Size will set the size of the
box while margins will only set the position of that grey box within the abstraction. Adjusting these setting
accordingly:

Inside the grey box it is now possible to create a suitable interface, according to users needs and aesthetic
preferences needed for functional and pleasurable control of parameters. See properties of individual GUI
objects (like canvas, slider, etc) and experiment what can be done with them. Simple delay abstraction in this
case receives an underlying colour canvas and two sliders, one for delay-time and the other for incoming
level:

While editing the abstraction with graph-on-parent, abstraction is greyed-out on the parent canvas until the
abstraction window is closed. Only then the final appearance can be seen:

Graph on Parent 146

The purpose of a pixel wide transparent gap between the gray border and canvas in the abstraction is to reveal
inlets and outlets at the parent window - however with sizing of inlaid canvas, even black borders can be
hidden. Calling this abstraction as usual - by creating an object box and typing the name of abstraction
without the extension .pd - will always instantly create this GUI:

that needs nothing more than to connect to audio signals and adjusting controls:

Graph on Parent 147

Arrays, Graphs and Tables
Often, we need a way to conveniently store large amounts of data and to be able to instantly access it. Pd uses
Arrays for this purpose. An array can be thought of as a container in the computer's memory with neatly
indexed drawers with data that can be looked up instantly. They are used for many purposes, including the
loading of soundfiles into Pd.

Arrays are accessed by their Index number. These numbers are used to look up values stored in the array. So
if we ask an array what is stored at index number "0", it will return the first value stored there. And if the
array has 100 values stored in it, asking it for index number "99" will give the last value in the array.

Arrays are displayed on screen in Graphs. A graph plots out the data stored in the array using an X/Y format,
meaning that the index numbers of the array are shown on the X (horizontal) axis, and the values stored at
those index numbers are shown on the Y (vertical) axis. This graph is created automatically, whenever we
create an array.

However, when we don't need to see the array on screen, we can hide it away inside a Table. A table is a
subpatch which contains both the array and its graph. In this case, it is used with a creation argument which
gives the name of the array. For example, if you create an object named [table mytablename], then inside the
[table] object you will find an array named "mytablename" inside its own graph.

Creating an Array

To create a new array, choose "Array" from "Put" menu and a dialog appears:

Here the name and size of array can be defined. The name of the array should be unique and $0 can be used in
a name (i.e.: $0-sample1) to avoid crosstalk. The size of the array defines how many elements it will hold. If
the array will be used to control a 16-step sequencer, the only 16 elements are needed. But if it will contain a
two seconds of audio at a 44.1KHz sampling rate, then the array would require 88200 elements. (The array
can also be resized later, however, when the soundfile is loaded into it.)

The "save contents" button will cause Pd to save the contents of an array within the patch file. This is useful
when it stores data that might be used each time the patch is opened, for example to modulate the frequency or
amplitude of a sound. However, this is not recommended if soundfiles will be loaded into it, as the audio data
will be stored as text information inside the Pd patch!

The next three options, "draw as points", "polygon" or "bezier curve", define how data will be visualized: as
discreet points (horizontal lines), as cornered zigzagging connected lines or smoothed bezier-curved line:

Arrays, Graphs and Tables 148

The last option is whether to display the array "in new graph", or use an existing one ("in last graph"). Most
often, each array will use its own, new graph. However, displaying multiple arrays in one graph can be a way
of visually comparing information.

Using Arrays to Display Audio

Sometimes arrays can be used to display the waveform of sound signals. Using [tabwrite~], sound signals are
recorded into table. Every time a [tabwrite~] receives a "bang" from the [metro] object, it will start recording
(sampling) the incoming audio signal into the array, graphing it when it reaches the end of array:

In above example, [tabwrite~] is sent a "bang" every half second to continuously display the waveform
produced from two [phasor~]s, and a [clip~] object.

Writing Data to an Array

Data can be put as values into tables too, simply by sending an index number (X-coordinate) and a value
(Y-coordinate) to [tabwrite] (no tilde!) object:

Creating an Array 149

In above example, for each index number (they are produced with a counter and start from beginning (0) with
[mod 100] at 100) a random value between -1 and 1 is written to a table.

Reading Data from Arrays

Tables can be read (looked up) in two ways: to get discrete numbers, or to directly read them as audio
waveforms. With [tabread] an index number is taken as an X-coordinate and value in the table (Y-coordinate)
is output. In the following example an array is used in a repeating sequencer-like fashion as a simple
rudimentary control for an sawtooth oscillator:

With [tabosc4~] table data is used as an oscillating waveform - like sinewave is used in sinewave oscillator
[osc~] and sawtooth wave is used in [phasor~]:

Writing Data to an Array 150

In above example an oscillating waveform from table7 is used to modulate frequency of an oscillator that is
using the same waveform to synthesize sound. Changing the table in realtime will influence the modulation
and oscillation. Source for hours of fun!

Using Arrays to Play Back Samples

Another way to read data from a table is to play it as a sound recording - which usually is, especially if array
is filled with data from a sound file. For this [soundfiler] object comes handy, as is shown in the following
examples. In first, array is played using simple and straightforward [tabplay~] object, which offers flexibility
of playing from a specific point for a specific length. Remember, digital sound recording is, simply put, high
frequency measurements (sample rate, i.e.: 44.1kHz) of sound vibrations. In Pd, when soundfile is loaded into
a table, every single measurement (sample) can be accessed. That is why, 44100 samples equals 1 second (in
most cases).

Following to the aforementioned possibility of accessing individual samples within a sound recording that's
been loaded into an array, a [tabread4~] object allows more computational flexibility. Below, [phasor~] object
produces ramps (sawtooth wave) from 0 to 1 at the audio rate (commonly 44100 times in a second). If
frequency of the [phasor~] oscilator is 1Hz, it will output a ramp from 0 to 1 in exactly one second. If
multiplied by 44100 and sent to [tabread4~], it will read first 44100 indices (indexes) in a second and output
the values as an audio signal - example below tries to demonstrates that with a twist or two:

Reading Data from Arrays 151

First twist comes from an idea of changing the frequency of phasor, and this way slowing down the ramps.
This would however shift the pitch of the sound - like changing speed of a vinyl record. This is prevented by
multiplication with higher number of samples, which effectively turn the parameter into the length of a sample
that is being looped instead of slowing it down. Looping is here because [phasor~] starts again at 0 after it has
reached 1. The other twist is the starting point, which simply shifts the whole loop by adding number of
samples (seconds multiplied by 44100).

Using Arrays to Play Back Samples 152

GEM
GEM which stands for "Graphics Environment for Multimedia" is a tool for visuals. With GEM it is possible
to generate and manipulate 2D and 3D graphics and animations, process & modify media like images &
videos and generate particles.

This manual will explain the main objects that comprise GEM, and the basic techniques you will need to get
started creating your own GEM projects.

A good start to get an idea about the various possibilities what can be done with GEM is to take a look at the
examples & help patches that come with GEM. They can be can be accessed via the Pd Help Browser (in the
Help menu, under "Browser..."), under "examples/Gem" or have a look at the GEM manual in
"manuals/GEM."

GEM is a Pd Library and comes ready to use as a part of Pd-extended. It was initially written by Mark Danks.
Some of the past and current GEM developers are IOhannes ZmÃ¶lnig, Chris Clepper, James Tittle(tigital),
Cyrille Henry.

GEM 153

What GEM Is For
GEM is the part of Pd used for creating motion graphics. You can use GEM to create and play back videos
and still images, mix videos, draw shapes in 2D and 3D, move objects and shapes around. Because it is part
of Pd, you can make your visuals react to sounds, generate them from sounds themselves.

GEM & OpenGL

Since GEM is based in a large part on OpenGL, we recommend learning about OpenGL, and 3D graphics in
general. The main OpenGL book is known as the "Red Book," titled OpenGL Programming Guide: The
Official Guide to Learning OpenGL. It is outside the scope of this introduction to get into the details of 3D
animation, but we will do our best to explain the basics.

The Very Basics of Rendering

When your graphics are "drawn" into the computer screen, we call this process rendering. Quite simply,
your graphics may come from many different sources, such as video files, image files, and algorithmic
animation, but at some point they all need to be combined together and displayed as pixels on your display,
whether that display is a computer monitor, TV, LEDs, or a projector. Since you may not be drawing to all
the pixels on your screen at once, we call this area a "window." You are probably very familiar with the
concept of different windows on your computer.

The end result of the rendering process, the section of pixels that will be drawn to the screen, is called a
"frame." Rendering happens discretely, at a certain number of frames per second (e.g. the framerate). Think
of it as if the frames were images on a film strip, flashing by. Each one is an individual, separate image, and
the illusion of motion is created just like in film, by showing sequences of slightly different frames. 25 frames
per second (fps) is the default, and around 15 fps is about as slow as you can get before you lose the illusion
of movement.

You should be aware that complex graphics may take a long time to render, possibly longer than the normal
time between frames. In this case, you will not be able to reach the framerate you've set.

[gemwin]

[gemwin] is the GEM object that represents the window into which your graphics will be drawn. It controls
the timing of your graphics, by scheduling when frames should be drawn to the screen based on the framerate,
and discards them if they have taken to long to render (is this true?). By default it also clears the window
every frame and sets it to a "background" color, specified as a list of R G B values.

Messages to [gemwin] change the size of that window, start and stop the rendering process, alter the position
from which you look at your 3D , and control various other aspects of the window, such as antialising. Other
messages to [gemwin] are explained in detail in the [gemwin] help patch.

What GEM Is For 154

Fig. 3: Some settings for [gemwin].

gemhead

[gemhead] is the start of a chain of graphics operations connected by patch cords that should be executed
every frame. Drawing operations, including video effects, cascade from the top down, adding to each other
flow downwards across objects. This chain of operations is triggered invisibly by [gemwin] according to the
framerate you have set. You can turn this automatic rendering off by sending [gemhead] the message 0.
Additionally, [gemhead] can be triggered manuall by a bang, which is useful when you want to control the
order in which your graphics chains are drawn. With several gemheads, you can force this execution order by
either giving them an argument or set their order number. Lower numbers are triggered first. The default
ordering number is 50.

Fig. 4 The number argument after gemhead defines the order number.

Let's get started

We will start from the very beginning. GEM is based on the principles of OpenGL. You can work with
images and videos (which are by the way a number of images that change with every frame), and you can also
work with 3D shapes like 3D models, curves or simple rectangles.

Here is a first example that displays an image in your GEM window.

Fig. 1: A Basic GEM patch. The key objects in this example are [gemwin] and [gemhead].

In order to open up a window into which you can draw stuff you have to create an object called [gemwin]
which is your render context and you send it the messages "create" to create the window and "1" to start the
rendering.

Starting with a [gemhead] you create a "render chain", that will draw things into your GEM window. In this
case an image which is mapped onto a rectangle.

[gemwin] 155

Here is how it looks like.

Fig. 2: GEM window

pix_objects and and 3D Shapes

The order in which objects are connected in Figure 1 might seem a little strange to you. From your real life
experience you would probably do it the other way round: First grab a piece of paper or a t-shirt and then
draw an image onto it. In Gem this is different, you create the image first and then you decide what you're
going to do with it: project it on a square, a sphere, a 3d model.

Another basic principle of how OpenGL works, is that you distinguish between functions that affect your
images and functions that affect your 3d shapes. Images have to be mapped onto 3d shapes. This means:
usually no image will be drawn in the GEM window unless it is associated with a 3d shape, very often a
rectangle, but of course there are also a lot of other shapes, more about that later.

Eventually, this gives us two sets of GEM objects: the one that relate to image processing and another set that
relates to shapes and their transformations. The first group will get a lot of attention, especially in the
beginning of this manual, but on the other hand, always have in mind, that images are only one aspect of
OpenGL.

The objects that deal with textures are called pix objects and have the prefix "pix_" in their object name. The
doorway into the shape world is called [pix_texture]. This object sends the image from your CPU memory to
the graphics card memory from where it is "mapped" onto one or several shapes.

Let's get started 156

Images, Movies and Live Video
For any image processing you need a source image. This can be a file that you load from your harddrive or a
live video feed. This chapter will introduce [pix_image], [pix_film], [pix_movie] and [pix_video].

[pix_image]

In the basics chapter we already used the object [pix_image]. This object allows you to load picture files.
Supported formats are *.tif, *jpg, *.png, *.bmp and *.gif.

To load an image into [pix_image] either add the filename as an argument or send it the message open
filename. If you want to select a file using a file browser you can use the object [openpanel].

[pix_film]

As with [pix_image] you can load movie files by passing [pix_film] the file name as an argument, or by
sending it an "open" message with the filename. The list of supported formats may vary depending on your
installed movie codecs, but usually you should be able to play *.avi, *.mov and *.mpg files.

Please be aware that sound is not supported by [pix_film] ([pix_movie] neither). If you want to sync a
soundtrack of a video to your images, you have to first extract it using an external video editor.

[pix film] will play your movie automatically if you send it a message "auto 1". The framerate at which your
movie is played is dependent on the framerate that was set with gemwin. The message "auto 0" will cause
[pix_film] to just display the current frame. You can use the right inlet to scroll through your movie or jump
to a certain frame. That also allows you to play movies at different speeds, even backwards.

The rightmost outlet of pix_film will output a "bang" everytime the end of the film is reached.

Images, Movies and Live Video 157

[pix_movie]

[pix_movie] works exactly like pix_film. The only difference is that you don't need [pix_texture]. You can
directly connect the outlet of [pix_movie] to a rectangle.

[pix_video]

[pix_video] will grab live input of a camera that is attached or built into your computer. Usually you can
receive a video signal only once on your machine, so if another application or even another Pd patch already
uses video input, [pix_video] will not be able to receive a signal. On the other hand, if you have several
cameras attached to your system, you can use several [pix_video] objects and specify the the camera devices
with messages like "device 0" and "device 1".

A "dimen" message will let you set the resolution of your video image. If you use a small resolution, your
render engine will have less pixels to render and thus be faster, but of course this will also decrease the image
quality. To test different resolutions you might want to set the quality setting of [pix_texture] to 0. You will
also realize that not all resolutions are supported by your system. Just play around with dimen to figure out
how high or low you can set dimensions.

[pix_film] 158

Related Objects

Finally, I also would like to briefly mention some other objects that allow you to "create" images.
[pix_multiimage] will allow you to load several images at once. Use the right inlet to switch between them.
Also check out [pix_set] if you want to create an empty image. Or play around with [sig2pix~] if you want to
feed your audio signal into an image buffer.

Related Objects 159

GEM mini-video mixer..
These are the basic elements you need to make the simplest two channel video mixer in gem:

GEM mini-video mixer.. 160

 This is a good starting point to study the basic structure of a video mixer in gem but can be / should be
modded when you want to make a serious use of it..

You can for example render each element of the composition in an diferent rectangle so you can modify
rotation, position, size, etc in an independent way, instead of doing that with the final mix.

 Also I recommend to make abstractions like "pd player" "pd chroma" "pd webcam".. So you will have a
nice and clean modular interface.

2- Adding webcam / live video input:

This is the structure of the "video input" apparatus:

To add pix_video to the gem string we make this:

 Here I added the message [dimen 512 384(to [pix_video] to adjust the dimension of the two sources to mix.
If the size of the two sources in pix_mix doesnÂ´t fit, this will not work!! .

 By default, pix_video outputs 320x240 that is a decent resolution for realtime live video mixing so if you
want to work in any other resolution, keep this in mind.

2- Adding webcam / live video input: 161

3-chroma key

LetÂ´s continue modding the "mini_mixer" ..

Here, instead of the [pix_mix] we have the [pix_chroma_key] and instead of the 7 objects that conforms the
video player, thereÂ´s an abstracion made with "graph on parent". Also we can do that with the [pix_video].

This Chapter is about image and video processing effects that can be achieved using pix_objects.

link to pix_gain and pix_threshold zip file

[pix_gain]

3-chroma key 162

http://en.flossmanuals.net/floss/pub/PureData/GEMPixEffects/GEMPixEffects.zip

[pix_threshold]

[pix_gain] 163

 This chapter will show how to save images and record movies from your gem animations.

[pix_threshold] 164

Recording movies with pix_record

Animations of still images

link to patch

 Gem window

Here [pix_record] will be used to make a simple animation of png images (including transparency).

The patch might look a bit complicated but basically:

- the top quarter allows to create a Gem window and import Gem and cyclone/counter

- the lower-right part will mix two pictures at a certain rate given by the [metro] object

- the lower-left part will trigger recoding through [pix_record]

Note that pix_record can (at the time of writing) only record one pix chain - you cannot save a texture
projected on a geometry (try with a [cube] for example).

Recording movies with pix_record 165

http://en.flossmanuals.net/floss/pub/PureData/GEMSavingAndRecording/gem_pix_record_still_images.zip

Animations of still images 166

 GEM window properties:
This Chapter show how to go to fullscreen mode, (and leave it again), how to setup the render window on the
second screen or use multiple screens.

1- fullscreen

2-Extended desktop,

Most of the times, you have to deal first with your operative system, even before opening pd...

While nothing is attached to the video output of the computer, the graphics card reserves for him all the
performance, so usually you have to connect the vga/s-video cable or in some computers, like the new macs,
you have to connect an "adaptor" (DVI-vga /DVI-composite..) to "inform" to the graphic card that you want
to use the video output and then, your screen will turn black for one second (in case of osX) and now you are
ready to go to the display preferences/ screen settings .. and turn on the second monitor, set the resolution and
"extend desktop to that monitor" (in case of windows) and set resolution and mirroring (on or off) in osX.

NOte: Some times is better plug the video cable with the computer "off" an then start the computer in order to
let the system recognize and adapt to the video output.

Mind that if we are using composite or s-video cable, resolutions greater than 720 x 576 are only going to
cause trouble..

 Also when you use DVI/Vga, the more resolution you use, less performance..

a chapter about basic color keying in gemA precondition of a good working simple motion detection is that
you can disable the autofocus on your camera and that you have a good control over the lightning situation (so
no sun/cloud change or large shadows).

The first step to determine the position of a moving item in the field of view of your camera is to compare
frames to each other. In a stream of video you can either compare the previous to the current frame or a
previously selected frame to the current one. The fist method will give us the movement, but we will lose the
coordinates when the movement is very small or stops.

 GEM window properties: 167

[pix_movement]

Compare the previous frame to the current one. It takes a threshold value (0-1) as an argument and in the
second inlet.

This will result in all pixel information blacked out exept the space where a difference is detected relative to
the previous frame. We will get to the point how to measure that to trigger things when we compared it to

[pix_background]

It is the cousin of pix_movement with the difference that we can set the reference frame to which the current
frame is compared. This is called background substraction.

Click on the reset message to pix background to set the current frame to the reference frame.

A drawback of pix_background compared to pix_movement is, that if lightning situations change, we will
have to re-reset the frame to compare the current frames to.

[pix_blob]

either way, we need another object: [pix_blob]. The monochrome information we receive of
Pix_movement/pix_background are called blobs. The [pix_blob] object will give us mre infomations about
those blobs, which we need if a) we want to trigger things if something moves in the field of view of the
camera (pix_movement) or b) something is in the field of view of the camera what wasn't there when we set
the reference frame (pix_background).

[pix_movement] 168

With this patch, if you move in front of the camera, you will see the output of pix_blob's last outlet changing.
Where I left the empty box you can continue to add something you want to have triggered. Possibly a [>
0.001] which is the threshold followed by a [change] and a [select 1] to generate a bang each time the
movement goes higher than a defined value.

Getting the coordinates

OK, we built a motion detector, but what about the coordinates? Where is the actual movement happening in
the image? [pix_blob] has two more outlets which are just that.

note: i was trying to translate those patches into a manual:

http://damm-net.org/wiki/index.php?title=Bewegungsmelder

The Chapter needs to be extended to cover pattern recognition (TUIO), pix_opencv (face recognition), blobs
and multiblobs, IR illumination and multitouch technology.

A chapter about the usage of text and fonts in GEM.This Chapter will show how you can use keybard and
mouse to make your animation interactive.[gemframebuffer] is probably one of the most underestimated
obects in GEM...

Introducing [glsl_vertex], [glsl_fragment] and [glsl_program].

Shaders are small text programs that are uploaded to the GPU of the Graphics card that come in two flavors or
parts. In the first instance, geometry is constructed with vertices in OpenGL. Verteces can be described or
manipulated with vertex shaders. In Gem these are loaded with [glsl_vertex]. The geometry is textured by
describing fragments for the texture or color and can be described or manipulated with fragment shaders. In
Gem these are loaded with [glsl_fragment].

The beginning of a shader program declares which variables you can send to the shader program. These
parameters can be either be single floats or grouped as vectors. For instance color information sent to the
fragment program would be described with a vec4 for red green blue and alpha channels. A texture will have
the same amount of vectors.

Vertex and fragment programs pass parameters to one another so that the vertices correspond either to
coordinates of the the texture or to color and alpha information. In Gem linking the vertex and the fragment
shaders is done with [glsl_program].

[pix_blob] 169

This Chapter will introduce basic Shapes like square, rectangle, sphere... and model.

This chapter will talk about texture mapping on models and 3d animation using [multimodel].

This Chapter will explain viewing angle, camera movement, perspective...A Chapter about Lighting, and
other OpenGL functionality.A Chapter about Particle Systems.

Getting the coordinates 170

Game Controllers
 First, download the patches for this chapter: GameControllers.zip

There are many off-the-shelf Human Interface Devices (HIDs) which can serve as performance controllers.
Most game controllers perform quite well in live performance since they were designed for fast paced video
games. Gaming mice and joysticks and graphics tablets are especially good controllers. These types of devices
can be used with Pd with very good accuracy.

Start with the Keyboard

The most basic game controller is the keyboard, and basically every computer has one, so its a good place to
start learning about how to use game controllers with Pd. Pd comes with a set of very simple objects for
getting the key press information: [key], [keyup], and [keyname]. In the example below, you can see the result
of pressing and releasing the "Escape" key.

Let's start with [key] and its partner [keyup]. [key] outputs when the key is pressed down, and [keyup] outputs
when the key Both of these have a single outlet which outputs a number based on which key was used, so
here "Escape" has a key number of 27. This key number is based only on the position of the key, not the letter
it types. This is useful since there are many keyboard layouts for different languages and countries.

So we can now attach messages to the [select] boxes to make the space bar (key number 32) control a noise
burst, and the Escape key (key number 27) control a 250 Hz sine wave. We make [key] send a 1 to make the
[noise~] output sound to the [dac~], then [keyup] sends a 0 to turn off the noise.

So that illustrates the most basic way of getting data from the keyboard. It is useful for many things, like
turning the DSP on and off, creating the [gemwin], or toggling different parts in a performance patch. You
could all of the keys to make a laptop piano.

Mouse Cursor

Basically every computer has a mouse that controls a little arrow on the screen. This little arrow is the mouse
cursor. In Pd, we can get information about that mouse cursor using the [cursor] object. One piece of
information that is fun to play with is the position of the cursor on the screen, called the x, y coordinates.
When you bang the [cursor] object, it will output information. The "motion" message gives us the x, y
coordinates. The message looks like "motion 95 426" where 95 is the x position in pixels, and 426 is the y
position in pixels. If you use [print] you can see the "motion" messages in the Pd window.

Game Controllers 171

http://en.flossmanuals.net/floss/pub/PureData/GameControllers/GameControllers.zip

Right now, we are only interested in the "motion" information, so we are going to use [route] to get just the
"motion" messages from the first outlet on [cursor]. To get updated position information automatically, add a
[metro 100]. It then sends a bang every 100 milliseconds (ms) to give us a constant stream of "motion"
messages from [cursor]. The [route motion] outputs just the two numbers for the x, y position, so we can use
[unpack] to separate those into floats.

So now we have two floats to work with, perfect for controlling the frequency of two [osc~] sine wave
oscillators. Create two [osc~] objects, then connect one float to each, then connect both [osc~] objects to a
[dac~] to output the sound to the speakers. Be sure to turn on the DSP, and you can now control these two
oscillators with the mouse!

USB HID

You can also use just about any HID, such as joysticks, digitizer tablets, gamepads and â„�stomp-padsâ„�
are widely available and inexpensive. Most of these HIDs are well built but not expensive, since they are
made for the mass game market. The HIDs that are designed for "gamers", serious video gamer players, are
very good quality but can cost quite a bit more.

Mouse Cursor 172

Plug your USB joystick or gamepad into your computer, for example, and they will be recognized by your
operating system as HID devices. Pd can get data from HID devices that your operating system recognizes
using the [hid] object. For this example, we are going to start with a gamepad. This one is called the Logitech
WingMan Gamepad Extreme, it is old so you can buy it for less than US$20. It is more fun than your average
gamepad because it had a tilt sensor in it.

Start by creating an [hid] object and see what it finds. Send the "print" message to [hid] to get the list of HID
devices that the operating system recognizes. We are looking for Device 6: 'Logitech Inc.'
'WingMan Gamepad Extreme' version 259 @ location 0x1a200000, the name matches
the name of the gamepad above.

The gamepad is device 6, so send [hid] the "open 6" message. Then create a "toggle" from the "Put" menu,
hook it up to the left outlet of the [hid] object. [hid] has two outlets: data comes out of the left outlet and status
messages come out of the right outlet. We want the data, so we are only going to use the left outlet for now.
Create a [print] and attach the left outlet of [hid] to that [print]. Now we are ready to see some data in the Pd
window, turn on the toggle and you should see a lot of data when you move the gamepad and press buttons.

USB HID 173

Now we can do something a lot more fun, let's make a simple instrument. We can make the left-right X axis
of the gamepad control the frequency and the back-forth Y axis control the amplitude. We need to
understand a little about the messages coming out of the left data outlet to use them. The data messages that
come out of the left outlet of [hid] always have three parts: "type", "element", and "data". A message
representing the gamepad's left-right X axis might look like "abs abs_x 254" or "abs abs_x 3". So we need to
[route] those messages to get just the numbers. Then hook up some number boxes to see the numbers change.

Now, the last step is the best, we get to make some noise. This example uses an [osc~] but you can use any
synthesizer that you want, or even movie players, 3D shapes, or whatever else you can control using numbers.
After all, once you have a number in Pd, it is just a number no different than any other, and you can use that
number to control anything else. So we can use the X value directly to control the frequency, so hook that up
to the left inlet of the [osc~]. Then create a [*~] to control the amplitude. For amplitude we want a number
between 0 and 1. This gamepad has a maximum value of 1023, you can find that out by moving the gamepad
around and watching the numbers. So we will divide the Y value using [/ 1023]. Then connect the [/ 1023] to
the right inlet of the [*~]. Last, create a [dac~] to output the sound to the speakers, and connect the outlet of
the [*~] to the [dac~]. Turn on the DSP, and you have a simple instrument!

USB HID 174

What do "abs", "rel", and "key" mean?

Any data message from [hid] that has "key" as its first element means that it is a button or key of some kind.
This includes keyboard keys, mouse buttons, joystick buttons, etc. The X,Y,Z and other axes are often labeled
as "abs", which is short for "absolute". That means that a given left-right position of the gamepad will always
have the same value. So it is an "absolute" measurement of the position. There is another kind of data that is
in contrast to the absolute "abs" data, it is "relative", which [hid] calls "rel". A mouse outputs relative data, for
example. Each time it outputs data about the left-right X position, it reports how much it moved since the last
time it sent the X position. So it tells you the "relative" position of the mouse, it is always "relative" to the last
time the mouse sent data.

Make Your Own HID

ItÂ´s possible also to build a custom USB HID device with a microcontroller and few more parts to plug
analog sensors to it and then send the data to pd. This is a USB HID board called "minia" based on the
microcontroller atmega 8:

and this is the USB HID controller finished with infrared sensors, accelerometer, potentiometers, and
pushbuttons.

What do "abs", "rel", and "key" mean? 175

 HID ItÂ´s also the protocol used to transmit the data of the sensors, buttons, etc, through the usb cable and
also via bluetooth or infrared...

One of the advantages of this protocol is that is "plug&play" by definition and most of the USB HID devices
doesnÂ´t need any drivers to work.

Another good thing about HID protocol is that itÂ´s optimized for usb, so is faster and easier to use respect to
other protocols like "serial" that requires more complex hardware and itÂ´s own drivers.

 HID to Pd

To read HID data from a device in pd there are several possible objects. we can use the object [hid] in linux /
osX and [hidin] in windows.

Before opening pd, we should plug the device, otherwise this probably will not show up..

To "inspect" for HID devices (internal and connected to the usb) we send the message "print" to the object
[hid] and then, we can see in the console which HID devices are detected with pd

NOTE: In some computers, there are small electrical differences between the USB plugs so sometimes, if a
USB HID device doesnÂ´t show up, we can solve this by changing the plug and restarting pd.

To "inspect" for HID devices (internal and connected to the usb) we send the message "print" to the object
[hid] ([hidin] in windows) and then, we can see in the console which HID devices are detected.

We can see here also that pd assigns a number to each device.

 this number is used to select which HID device we are going to use to get data.

Make Your Own HID 176

This device "5" (xxxxx-avr) is that USB HID device with sensors and potentiometers that we can see in the
other picture.

Pduino:

Arduino is another microcontroller interface for creating alternative tools to map physical interaction. It is the
result of an open source hardware project aimed at providing the art and design community with a tool for
creating electronic interfaces. By allowing users to interact in various new ways, these new interfaces can be
seen as enabling more natural bonds with computers. Arduino consists of an 8-bit microcontroller and a port
through which to communicate with a computer. This allows a connection to existing software packages such
as, Pure Data.

Pduino library provides communication between Arduino and Pd objects, which enables us to control analog
and digital sensors with Pd interfaces. This involves receiving input data throughout the sensors as well as
sending data to control and change states of the sensors. In order make this communication happen, first you
need to connect your Arduino board to your computer (see http://arduino.cc/ for how to install Arduino board
driver and Arduino software). After you connect your Arduino board, you need to upload the Firmata
firmware to the Arduino board that you will receive sensor data through your Pd interfaces. Here it is the

 HID to Pd 177

http://arduino.cc/

instrcutions on how to upload Firmata firmaware to Arduino board.

First, double-click "arduino" in the Arduino application folder. After you run the Arduino application, in the
toolbar, click the

" Open button> Examples > Library Firmata > SimpleAnalogFirmata".

Once you click the SimpleAnalogFirmata, the Fimata will be opened in your Arduino application.

In this chapter we will introduce analog sensor examples; therefore we will upload SimpleAnalogFirmata to
the board. For other types of sensors, such as any digital sensor or servo motor sensor, under Library Firmata
> you need to choose the related Firmata based on your sensor type.

placeplace

In order to upload this Firmata to your Arduino board first you need to define your Arduino board type and
the serial port that your Arduino board is connected.

In Arduino application click " Tools> Board " and choose your Arduino board type, i.e. if you have Arduino
Deicimila board, choose the option "Arduino Diecimila or Duemilanova w / ATmega168". After you set the
type of your Arduino board, set the serial port that Arduino board is connected. Click the " Tools> Serial Port"
and choose the right serial port.

Pduino: 178

After setting up the board and serial port, in the tool bar click the " Verify button "

This will compile the SimpleAnalogFirmata and you will receive " Done compiling " message in Arduino
application. If you receive any error messages simply go through the above instructions and compile the
firmata again. Once the firmata is compiled, you can upload it to your Arduino board.

In order to upload firmware, first press the reset switch button on your Arduino board, which is located closer
to the main Atmel AVR ATmega chip on your board. The location of the reset switch on the board might vary
based the type of the Arduino board.

After pressing the reset switch, then in the tool bar, click the " Upload to I/O Board button", and once
you see "Done uploading." message on Arduino software, the firmata is successfully uploaded to Arduino
board. Close the Arduino application and keep your Arduino board connected to your computer.

In Pure Data [arduino] object will set the connection with the firmata that you just uploaded to your Arduino
board. When you create an [arduino] object in your patch, all the abstractions that are required for Pduino
library will be loaded as well. The inlet of this object lets us to send messages to start serial port
communication between the computer and Pd. Since there are more than one serial port in a computer, first we
have to figure out the number of the serial port that the Arduino board is connected. Simply by sending a
[devices(message to the [arduino] object, you can get the list of devices connected to your computer on the
main Pd window.

Once you are sure that you have connected your Arduino board to the computer, click the [devices(message
box and you get similar type of information in the main Pd window as below.

[comport]: available serial ports :

 4 /dev/ttyUSB0

In this case, Arduino board is connected on the port /dev/ttyUSB0 and its port number is 4. Therefore, in order
to start Arduino - Pd communication, related to the above example, you send [open 4(message to the
[arduino] object.

Pduino: 179

Main Pd window will display similar type of below information if the serial connection is opened
successfully.

get_baud_ratebits: 115200.000000
set_baudrate baudbits: 4098
[comport] opened serial line device 4 (/dev/ttyUSB0)

Once you open the serial port connection, you can immediately receive data from your Arduino board. First
you need to enable sensor data to pass through [arduino] object and later separate the sensor data types. In this
below example, we focus on analog input sensors; therefore [route] object only enables analog sensor type.
The later [route] object separates the analog input data so that you can receive each sensor data in a separate
number box.

Pduino: 180

Even though there is not any sensor connected to the Arduino analog pins yet, when you enable the data to
flow through [arduino] object, analog input pins number boxes in above patch receive flow of numbers. These
are simply noise data that the empty pins on Arduino board generates.

Below images show a basic photoresistor sensor connection with Arduino board. In this circuit 5V power,
ground and Analog in 0 pins are used. After you build up the photoresistor circuit below, simply by blocking
the amount of the light that photoresistor receives, you can change the value of the electric current in this
circuit and you can receive the value changes in the above Pd patch.

Pduino: 181

Because in this circuit there is only one analog sensor and it is connected to the Arduino Analog in 0 pin, if
you connect a0 number box output to a [send] object, you can receive the sensor data in different Pd patches

Pduino: 182

as well. Just a reminder, you should use the same target name in both [send] and [receive] objects.

Below Pd patch example receives the photoresistor sensor data to control the amplitude value and the central
frequency of the bandpass filter.

These are the basic examples for Pduino library; however arduino-test.pd includes other type of sensor
connections through [arduino] object.

Pduino: 183

Open Sound Control (OSC)
zip file of patches.

OSC stands for Open Sound Control, it was originally developed by Matt Wright at CNMAT
http://cnmat.berkeley.edu .

OSC can be seen as the successor of the MIDI communication protocol.

Advantages

speed : information can reach the speed of your ethernet connection.•
tags : data can be tagged and tags can be ordered in a tree-like structure.•
network connections : osc makes it easy to handle connection between various equipments
(networked computers, controllers, etc).

•

internal connections : osc also simplifies communication between applications (e.g. pd, python,
supercollider, etc.).

•

open : osc is an open protocol.•

Drawbacks

regularity : the flow rate of data depends on the quality of your connections.•
standard : synth and controllers manufacturers just begin to implement osc in their equipment.•

OSC follows the ethernet protocol. In order to use it you will have to use IP adresses and Port numbers. The
following figure shows how one can create a network of applications communicating with osc on a single
computer - using the localhost adress (which is also 127.0.0.1).

Internal communication :
puredata can send infos to python and supercollider (on ports 57120 and 9001)
which in turn might receive info from puredata (port 9002)

OSC in Pd

We will use [mrpeach] objects (there are other OSC implementations for Pd).
This simple patch just send two flows of data (marked with tags) from the left to the right of the patch.

You could of course do this with a simple pair of send/receive pd-objects.

Open Sound Control (OSC) 184

http://en.flossmanuals.net/floss/pub/PureData/Network/pd_floss_osc.zip
http://cnmat.berkeley.edu

Simple osc sender/receiver patch :
The above example shows how to create an osc sender (ip: localhost, port: 9002)
and an osc receiver (ip: localhost, port: 9002)

Exercise :

Try to use two instances of Pd, one sending an osc message and the other instance receiving it.

In this case, you don't have the choice you cannot use simple [send] and [receive] objects.

(on Osx you will have to copy your existing application).

Connecting two computers

Let's suppose that you have two computers which are on the same network, computer 1 has IP adress A1 and
computer 2 has adress A2. You need to be aware that a single computer might have several IP adresses (at
least two: the localhost/internal adress and the physical IP adress of your ethernet card connected to internet
e.g.). You will need to know the second type of adress. Look in your system preferences to get these numbers
(on a linux terminal just type ifconfig).

Simply changing the adress in the send message of the previous example should work.

Instead of [connect localhost 9002(

try for example :

[connect 192.168.1.100 9002((type of private network adresses)

[connect 172.30.3.40 9002((type of global web adress).

MIDI to OSC

It might be useful at times to convert MIDI inputs to OSC messages.

OSC in Pd 185

Simple MIDI to osc converter :
Wether you receive some MIDI signal from a controller or activate the slider you will send the message osc
/test to the osc receiver connected to port 9002 internally.

MIDI to OSC 186

[netsend] and [netreceive]
The [netsend] and [netreceive] objects are for transmitting and receiving messages over a network. An
example use would be an installation where two computers are needed to communicate with each other to
lighten the processing load. Because these two objects are intrinsically linked, we will talk about them
together.

[netsend]

Creating an instance of [netsend] will open a network socket to another computer. Both TCP and UDP
protocols are supported. [netsend] defaults to a TCP connection. You can change to UDP adding the
argument 1 when creating the object. You will need to supply an IP address or hostname, of a host machine,
as well as a port number. You can provide this information with the message "connect IP_address
port_number".

The outlet on the [netsend] object indicates if it is connected to a remote computer or not. It will report 1 if it
is connected, 0 if it is disconnected.

Once you have established a connection, you may send messages. You must prepend all messages with the
word "send". For establishing a stable protocol, it is advisable to name each message being sent.

You can terminate a connection with the message "disconnect".

The messages are sent using the FUDI protocol. If we were to examine one of the messages sent above, it
would appear like this:

MyText anything;

[netreceive]

Creating an instance of [netreceive] will open a network listener socket on the local computer. Just like
[netsend], UDP and TCP are supported. [netreceive] takes one argument, the port it is listening on. An
optional second argument will change the object from TCP to UDP. [netsend] has two outlets when it is
listening for TCP, and one when listening for UDP. The left outlet prints out any data it has received. The

[netsend] and [netreceive] 187

right outlet reports the number of active connections.

An example with multiple arguments is below.

Connecting with other applications

[netsend]/[netreceive] can communicate with other networked applications that communiate via TCP and
UDP. Max/MSP has a pair of objects with the same name created by Olaf Matthes. A PHP script connecting
to a UDP netreceive object on port 13000 would look like this :

$socket = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP);
$result = socket_connect($socket, $address, 13001);
 socket_send($socket, $data, strlen($data), MSG_DONTROUTE);

[netreceive] 188

Midi
This chapter will show you how to use midi to receive notes from midi keyboards or control messages from
standard midi devices and also how to send midi to other programs or to midi hardware.

Midi 189

Setup
Before start working with midi, you should select your device in the dialog: Preferences/midi settings

Then select which device you want to use for input/output midi, by default no device is selected. Before
starting pd, you should plug your midi hardware, otherwise it will not show up in this dialog. In this case, we
have selected our hardware "USB MIDI 1x1" (a midi interface) and the rest of "devices" called IAC are
internal midi buses in osX.

Note to OSX Users : In some cases with OSX you will need to check and activate the device in this "Audio
midi setup" app. This can be found inside the utilities folder as shown below.

Setup 190

Channels and Ports
Once we have chosen the midi device, we can check if itÂ´s working. To do this you need to know a little
about the concept of midi channels.

Midi channels are used to identify devices so you can receive and send notes with specific hardware (or
software!). Usually midi devices use one 'channel' for sending and recieving this information. There are
usually 16 midi channels in total.

Multiple Devices

Pd can use also multiple midi devices, so in the midi settings window (seen before), you can add more devices
by clicking on the button "use multiple devices" and adding it in any free "port" (each one with the respective
16 channels...)

You can also in pd "filter" the midi messages by specifying which channel/port we want to "hear" with an
"argument" in the midi object.

objects used to receive and send notes are [notein] and [noteout] respectively.

 Here is an "extract" of the help for [notein], the object we will use when we want to connect a midi keyboard
(or any other midi device that generates notes!) to pd in order to play sounds or doing anything.

Channels and Ports 191

3-Midi hardware:
Since midi was developed in the 1980Â´s you can find many devices compatibles with it that you can use
with pd. Typically you can find synthesizers, midi interfaces, midi controllers, midi hubs and of course, the
symbolic midi cable. the cable itÂ´s a DIN 5 pin cable with two male conectors. the midi conector in the
devices itÂ´s always female, it doesnÂ´t mater if itÂ´s input or output so you have to take care when
connecting the devices because itÂ´s possible and easy to make a bad connection and then, your system will
not work..

 1- To connect any midi keyboard to pd, you have to connect the "midi out" of the keyboard with the "midi
in" of your midi interface.

A midi interface itÂ´s a device that adds standard midi hardware ports to the computer, tipically via USB
connection.

Note: There are modern keyboards that have an USB/ midi interface integrated to transmit midi directly to
the computer via USB cable. in this cases, you will not need the classic midi cable.

3-Midi hardware: 192

This is the setup Midi keyboard-->midi interface-->computer. In the midi settings configuration, you have to
select your midi interface as midi input. when you create an [notein] object in pd and you play notes in the
keyboard, you will see which note/s you are playing, the velocity and the channel. Here, we
can see that this keyboard is transmitting only in the channel 2. Usually you can change the transmitting
channel of the keyboards by looking in his own configuration.

3-Midi hardware: 193

4- Making notes in pd, Sending / reciving notes.
A standard midi note itÂ´s a message formed by a number that determines the pitch of the note, the velocity
(volume) and the note off message that is the same note but with the velocity=0

to send notes with pd to external hardware/software, we use the object [noteout],

This example patch, generates random numbers, then "format" this number into a midi note with velocity and
note off message and then send it "out" using the object noteout.

When you have selected the same internal midi bus in midi devices for in/out, ex: device in = IAC1 / device
out= IAC2, then you can create in pd a [notein] object to send midi notes to other pd patches.

This is the setup Pd-->midi interface-->hardware synthesizer.

In this case, you need to select the midi interface as midi output device in the pd midi settings.

In this case, was needed also to add (and bang) the message "2" into the right inlet of the object [noteout]
because this roland synthesizer only listens channel 2. We know this because before we connected the
keyboard as input in Pd and then, we could see that this machine works only on channel 2.

4- Making notes in pd, Sending / reciving notes. 194

5- Midi controllers
When we want to control our pd patches with a midi controller we use the object [ctlin], this has 3 outlets,
 the left one outputs the controller value (0-127), the middle one outputs the controller number (cc) and the
rightmost one outputs the channel and Port (channel "17" in Pd means midi channel 1 in port 2). In this
picture we can see the output of [ctlin] object when I move one encoder in the midi controller "BCF2000"
connected to the port 2.

When you create the ctlin object without arguments, itÂ´s listening to all ccÂ´s and to all channels. This is
useful as an analysis tool to know which cc and channel sends each fader/ knob of your controller.

In some midi controllers, some faders send the same cc number than others but in other midi channel.

Tipically, we add the arguments cc (control change) and channel/port to the ctlin object to make it "hear"
only the cc and channel specified because usually midi controllers have many knobs, faders, etc.. so each
fader/knob itÂ´s going to make only itÂ´s specific/s function/s that you choose..

When we analyze each fader/potentiometer/button/etc, we can create a specific ctlin message to listen only
one thing, this is the way to do an abstraction to have all the ccÂ´s of our midi controller assigned to an
individual output.

 This is how it looks like my object "pd uc16", ready to receive the ccÂ´s from my cheap midi controller
evolution uc-16. it also reports in a "bang" which output of the abstraction correesponds to each
potentiometer.

 This is how a "tuned" uc-16 looks..

5- Midi controllers 195

5- Midi controllers 196

 6- Sending midi to other softwares, sending CC
(control change).
we can use the same random notes patch weÂ´ve seen before also to send notes to any other software running
in the same computer.

Here, the trick is to have the same midi bus selected in Pd midi out device and in the midi in of the software
you want to use..

Control change messages:

These are special messages used to change parameters in the midi devices such as "cutoff frequency",
"resonance"... etc.. There are about 127 different ccÂ´s possibles in each midi channel.

In this patch we send the values of the slider to the cc number 7 in the channel 1.

 6- Sending midi to other softwares, sending CC (control change). 197

 7- Another midi objects:
There are more midi objects in pd and almost all of them are documented in the pd help.

[pgmin] / [pgmout] This objects receive and send "program changes". Program changes were used to change
"programs" or sounds in synthesizers, patterns in rythmboxes, etc..

[bendin] / [bendout] This objects receive and send "pitchbend" changes. Argument is midi channel.

All the objects we have seen till now are the "basic" midi objects included also in pd vanilla but there are
more objects like [midiin][sysexin] that runs only in linux or [touchin] and[polytouchin] that are not
docummented yet..

In pd extended there are more "advanced" midi objects inside libraries such as maxlib or cyclone. In the
chapter "list of objects" you have a short explanation about this new objects.

 7- Another midi objects: 198

http://en.flossmanuals.net/bin/view/PureData/MidiObjects

Streaming Audio
We shall look at streaming mp3 to a streaming server using Pure Data. You should have a running version of
Pd installed.

Additionally, you should have access to a streaming server.

If you have somebody that can lend you a server for this trial, then you will need to know to from them the
following:

what mountpoint do you use?•
the hostname or IP Address of the server•
the password for sending streams•
the port number of the server•
the type of server (Icecast2? Icecast1? Darwin? Shoutcast?)•

1. Create the mp3cast object

Now create a new object and type mp3cast~ :

If all is installed well the object will look like the above. If there is a problem the object will be surrounded by
dotted lines, this means that the object couldn't be created.

2. Connect an osc~ object

If all is ok, you can now add an audio object to the page so that we can send some audio to the signal inlet of
the patch. We will use the osc~ object.

The osc~ object is created in the same way and it we will also give it a parameter. This parameter sets the
frequency of the osc~ sound wave, and we will use 440 (Hz). Then attach the signal outlet of osc~ to the
signal inlet of mp3cast~:

Now we have a mono input to mp3cast~ but we want a stereo connection, so we will connect the same signal
outlet to right signal inlet of mp3cast~ :

3. Settings

We now want to send our server details to the mp3cast object so first we need to create 4 empty messages
boxes. Put them on your document like so:

 Streaming Audio 199

Enter the following into these newly created message boxes. One should contain the following:

passwd

another should have:

connect

the third should have:

mountpoint

and the last:

Icecast2

OK, so now we are ready to enter the details of our streaming server.

In the passwd message box type a space after 'passwd' and enter your password. In this example the I will
use the password 'hackme', and I would type this:

passwd hackme

So I get this:

Then we enter the mountpoint in a similar fashion into the mountpoint message box . I will use the
mountpoint live.mp3.

note : you do not need to enter the suffix ".mp3" in the mountpoint.

3. Settings 200

We also wish to enter the hostname and port of the streaming server. I will use the non-existant
ice.streamingsuitcase.com as the hostname and port 8000:

note : do not put in the leading http:// in the hostname.

Lastly, we have the Icecast2 message box. This defines what kind of server you are logging into. If you are
using an icecast1 server you would instead have Icecast1 in this box. Similar for Shoutcast. If you are
streaming to a Darwin server use Icecast1.

Connect all the control outlets from these message boxes to the left control inlet of the mp3cast~ object
box. You may have to move the boxes around a bit to make space :

 4. Start the Stream

Now, to start to stream you must goto run mode and press the boxes in the following order:

press passwd to set the password1.
press Icecast2 (or whatever server type you are using) to set the server type2.
press mountpoint to set the mointpoint3.

Now...this process has loaded mp3cast~ with the server settings. Click the connect message box and you
should be streaming!

To test connect with your favourite player using the the following syntax :

http://hostname:port/mountpoint

In my case this would be:

http://ice.streamingsuitcase.com:8000/live.mp3

 5. Streaming from The Mic

Lets replace the osc~ with adc~ like so:

 4. Start the Stream 201

http://

The adc~ object takes the input from your computers sound input. adc is short for Analog Digital Converter.
If you now stream the sound will be coming from your soundcard input!

6. Disconnect

Incidentally, if you need to disconnect the stream make a new message box , type:

disconnect

then connect this to the left control inlet of mp3cast~ , return to run mode and press it.

 5. Streaming from The Mic 202

oggcast~

Oggcast is known as a Pure Data External, it is not part of the Pure Data 'native' packages. Oggcast was
written by Olaf Matthes.

Oggcast is a streaming object. It enables you to send audio encoded in ogg vorbis to an Icecast2 or JROAR
streaming server. This means you can send live audio through the internet or a local network from Pure Data,
and one or more computers can pick it up from the streaming server, like so:

This means you also need to have access to a streaming server. If you have not set one up before this might be
tricky. You could also try borrowing some server time from someone. You will need to get the following
details from the streaming server administrator to be able to stream to the server:

Server address (hostname) of the server•
Port to stream on (usually 8000)•
Password•
Mount-name (the name of the stream you will create on the server)•

Parameters

All Parameters are listed here:

 oggcast~ 203

The passwd parameter is passed to the oggcast~ object through a message box.

Streaming from your Sound Card

Streaming from your sound card is really easy with oggcast~, you just need to try this patch:

In the above example you would replace :

localhost with the IP Number or hostname of your streaming server•
mystream.ogg with the mount point (name) of your stream•
8000 with the servers port number (it is usually 8000)•
hackme with your servers password•

In the above patch you will need to first press the password message box while Pd is in run mode, and then
press the connect message box.

Streaming from Pure Data audio

Alternatively you can create a patch for synthesising sound and then stream this. Here is a simple example
using a osc~ object.

Parameters 204

Again, in the above example you would replace :

localhost with the IP Number or hostname of your streaming server•
mystream.ogg with the mount point (name) of your stream•
8000 with the servers port number (it is usually 8000)•
hackme with your servers password•

Tips

changing the parameters of oggcast~ while streaming can cause the stream to drop out•

Streaming from Pure Data audio 205

Object List
As Pd-Extended is constantly growing at the hand of several developers all around the world, it isn't possible
to have a 100% complete list of objects. Neverthough, the next chapters include many of the most important
libraries.

The chapter division takes the original categories designed by Miller Puckette. Only specific libraries which
have a closed identity - for example like GEM - have a page of their own. The categories for now are:

Dataflow

Glue - General dataflow control•
Math - Mathematical operations•
Time - Time-related operations•
Midi - Midi Input/Output•
Tables - Table and array management•
Misc - Objects that don't fit any previous category•

Audio

Audio Glue - General audio control•
Audio Math - Mathematical operations•
Audio Oscillators and Tables- Audio generators and table readers•
Audio Filters - Filters and convolvers•
Audio Delay- Time-related operations•

Patch Management

Subwindows - Patch structuring•
Data Templates and Accessing Data - Objects related to data structures•

External libraries

GEM - OpenGL graphics and video library•
PDP - Video library to provide a way to use data packets as messages•
Physical Modelling - Physical modelling library •

Obsolete - Objects that for some reason became obsolete. Most of them are still available, but you should
avoid using them.

Vanilla and Extended Objects

Each distribution of Pd comes with the core objects, which belong to Miller Puckette's original version -
Pd-Vanilla. Besides that, it is possible for each user to use libraries of externals compiled by other users. Most
people use Pd-Extended, which bundles many externals automatically - others prefer to download and install
these libraries themselves.

Each page of this list is divided into two sections, Vanilla Objects and Extended Objects. In many pages
you'll see many more extended objects than vanilla ones.

Object List 206

Organisation

Each chapter has a table with the following columns:

Name - Name of the object•
Library/Path - name of the library to where it belongs (these libraries are stored in your pd/extra
folder)

•

Function - Short description given by the author•

Due to the decentralised development of Pure Data externals, it sometimes happens that some name clashes
between objects happen - sometimes even for objects with very different functions! In case the object you saw
from the list isn't the object you were thinking about, the easiest way to make sure you have the right object is
to write its complete namespace: for example, if you want to use the [makesymbol] object from the zexy
library, you can either write [makesymbol] or [zexy/makesymbol].

Name Library/Path Function

Organisation 207

GLUE
Vanilla Objects
bang send â„�bangâ„� message
change eliminate redundancy in a number stream
float store a floating point number
int store an integer
makefilename format a string with a variable field
moses part a stream of numbers
pack combine several atoms into one message
print print messages to the terminal window
receive receive messages without patch cords

route route messages according to their first
element

select compare numbers or symbols
send send messages without patch cords
spigot pass or block messages

swap swap two numbers, respecting right-to-left
order

symbol store a symbol

trigger sequence messges in right-to-left order and
convert data

unpack split a message into atoms
until looping mechanism
value nonlocal shared value (named variable)
Extended Objects
a2l any2list flatspace zexy convert "anythings" to "lists"
-dsp dsp01 jmmmp DSP switch

any store and recall any message (like f, or
symbol)

active cyclone report if window is active / inactive
add2_comma flatspace iemlib add a comma after a message
add2_comma iemlib add a comma after a message

allow flatspace maxlib lets only "allowed" floats or symbols
through

alternate flatspace markex alternate between two outlets

amplitude_n la-kitchen mapping return the amplitude covered by the last n
values

any_argument float_argument
symbol_argument initiate internals

any2string string2any flatspace iemlib converts ACII strings to pd messages
Append cyclone append a list to the incoming list

ascii->int float->ascii hcs convert a stream of ASCII digits to a single
value

atoi flatspace zexy convert ASCII to integer
bang-eater flatspace eat N bangs in every M bangs
bangbang cyclone send a number of bangs in order
bfilt cxc flatspace modulo + select 0

GLUE 208

bfilt2 cxc flatspace bang filter
bondo cyclone synx a group of messages
bpe flatspace iemlib break point envelope
Bucket cyclone pass numbers from outlet to outlet

buddy cyclone sync incoming data, output when all inlets
received data

button flatspace ggee a bang with a label
change_n la-kitchen returns 0 if the last n datas are the same
choice vanilla/choice search for a best match to an incoming list
coll cyclone store and edit collections of messages
compare-any list-abs test if two anythings are the same
count_n la-kitchen counts from 0 to n-1
counter cxc counter -> NV

counter gem-counter cyclone flatspace
markex counts the number of bangs received

cup ekext flatspace counts up
cycle cyclone send data to individual outlets

debounce mapping la-kitchen blocks the value of incoming data for the
further n samples after ech change

debounce_b la-kitchen blocks the input until a specified duration is
over

decide cyclone output 1/0 randomly
Decode cyclone sent out 1/0 to a specific outlet
default iemlib replace initial argument, if it is zero
demultiplex demux flatspace zexy demultiplex the input to the specified output
deny flatspace maxlib blocks "denyed" floats or symbols

detox jasch_lib extract values, contents, attributes from
xml-tag structures

disjoin join mapping split / joina range into two (0-1)
dist flatspace maxlib send data to a list of receive objects

dollarg flatspace iemlib receive parent initial arguments <list>, like a
$n

downsample mapping output 1 over n data
drip flatspace zexy unfolds a package to a sequence
dsp dsp~ iemlib control audio, measure dsp load
edge flatspace maxlib detect rising or falling edge in floats
entry flatspace text entry box

env env+ env- mapping normal / positive / megative envelope
follower

exp_inc flatspace iemlib linear and/or exponential increment counter,
bang controlled

f+ jmmmp counter with variable increment
fifo flatspace maxlib first in first out buffer for floats
fifop flatspace zexy first in first out stack with priorities

float24 flatspace iemlib concatenate a list of float-fragment-strings to
a 23 bit accurate mantissa

for++ flatspace iemlib incremental counter (triggered by internal
metro)

GLUE 209

forward cyclone send remote messages

fromsymbol tosymbol cyclone transform symbol to numbers or messages
and vice versa

ftos ext13 flatspace float to symbol
funnel cyclone tag data based on the inlet it arrived in
gate cyclone iemlib send data out the specified output
gcanvas flatspace ggee click and drag to get pixel values

glue flatspace zexy glue together 2 packates (append, prepend,
...)

grab cyclone intercept the output of another object
hid_one2twohid_one2threehid_one2four hid one-to-x mapping object
hysteresis mapping add hysteresis to input data
iem_anything iemlib latch for anything
iem_append iemlib append a message to any messages
iem_i_route flatspace iemlib variation of route (abbr. iiroute)
iem_prepend iemlib prepend a message to any messages
iem_receive iem_r iem_send iem_s iemlib receive object with changeable receive label
iem_route flatspace iemlib improvement of route
iem_sel_any flatspace iemlib control a message-box with multiple content

ignore flatspace maxlib lets information through only when it was
present at input longer than N ms

index flatspace zexy create a symbol->int map
init initialize a message via loadbang (abbr. ii)
iso flatspace maxlib queues up lists of pitches and attack points
iter cyclone split a list into a series of numbers
ixprint cxc flatspace print without identifier
k_receive
k_send

kalashnikov uzi ext13 flatspace send a specified number of bangs as fast as
possible

knob flatspace
last_n la-kitchen mapping save the n last incoming datas into a list
last-x list-abs make a list of the last x floats
lbang jmmmp loadbang which can be triggered more often
length flatspace zexy get the length of a list
lifo flatspace maxlib last in first out buffer for floats
lifop flatspace zexy last-in-first-out stack with priorities
line3 flatspace line with 3rd order polynome
list-abs list-abs apply abs() on floats of a list

list-apply list-abs apply the object created by [arg1 arg2] on
every list element

list-clip list-abs clip for lists
list-compare list-abs compare two lists element by element
list-delete list-abs delete element at a position
list-drip list-abs drips or serializes a list

list-drip2 list-abs drips two lists in sync (as long as 1st list
lasts)

GLUE 210

list-dripslow list-abs serialize a list on demand

list-enumerate list-abs serialize a list and put numbers in front of
each element

list-extend list-abs build a list from incoming lists and output
stored list

list-fifo list-abs first in, first out

list-filter list-abs returns a sequence of items for which the
adjusted operation is true

list-find list-abs find positions of a value in a list
list-idx list-abs get element at position idx

list-insert list-abs insert LIST before ELEMENT at position
POS in original list

list-l2s list-abs concatenate a list into a single symbol
list-lastx list-abs make a list of the last x floats
list-len list-abs calculate lenght of a list
list-lifo list-abs last in, first out

list-makefilename list-abs change symbols in a list, floats pass
unchanged

list-map list-abs swiss army knife of list operations

list-map2 list-abs map an operation on element pairs from two
lists

list-moses list-abs like moses for lists
list-onearg list-abs list with optional aegument

list-reduce list-abs list goes element per element through a
user-defined operation

list-replace list-abs replace (overwrite) a list from position POS
with a new list

list-rev list-abs reverse a list's order
list-rot list-abs rotate a list
list-seek list-abs walk through a list element by element
list-sieve list-abs look up ocorrence of incoming floats in a list
list-splat list-abs advanced list-split with negative indexes
list2int l2i flatspace zexy cast all floats of a list to integers
list2send flatspace iemlib convert some kind of lists to a sent message
list2symbol l2s symbol2list s2l flatspace zexy convert a list <-> symbol
lister l flatspace zexy stores a list
listfifo flatspace maxlib first in first out buffer for lists
listfunnel flatspace maxlib send values out as list with source index

listmoses ekext flatspace splits two lists according to the values
contained within the 1st list

listto mapping separate a list into a stream of atoms

local_max local_min mapping
give the value of every local maximum /
minimum whenever there is a change in
direction

lpt flatspace zexy write data to the parallel port
makesymbol flatspace zexy concatenate lists to formatted symbols
maskxor ekext exclusive-OR mask map
match cyclone flatspace

GLUE 211

look for a series of numbers and output as a
list

mergefilename flatspace iemlib merge a list of symbols and floats to a
symbol

modulo_counter flatspace iemlib increments counter-number from 0 to max-1
by a bang

multiplex mux flatspace zexy multiplex the selected inlet to the outlet

multiselect multisel flatspace markex select object which accepts a list in the right
inlet

nchange flatspace maxlib a "new" [change]
next cyclone try to separate messages into logical parts
niagara flatspace zexy divide a package into 2 subpackages
nop no operation
nroute flatspace maxlib rout if Nth element is matched
once iemlib only the first message passes through
onebang cyclone traffic control for bang messages
oneshot flatspace markex blocks after initial bang

OSCprepend list-abs prepends first argument to an OSC message
list

packel flatspace zexy get the nth element of a package
parentdollarzero parent$0 iemlib receives the parent $0 symbol
pique flatspace find peaks in an FFT spectrum
polymap ekext two-dimensional polyphony-restricted map
polystat ekext outputs statitics about voice usage

pre_inlet flatspace iemlib before an incoming message be released to
an outlet, a message of 2 items will be sent

prepend cyclone prepend a message with another message
prepend flatspace iemlib list prefixer
prepend cxc list prefixer -> NV
prepend_ascii iemlib prepends a message + selector symbol
prepend_output an identifier
prepent list-abs shortcut for [list prepend]-[list trim]
pwm hcs pulse width modulation at message rate

rec-name jmmmp automatic naming for a record / playback
machine

receive13 r13 send13 s13 ext13 flatspace like r and s, with set messages

receive2list iemlib convert received message to a list message
and then the incoming message

recent ggee output only most â„�recentâ„� messages

relay flatspace zexy relay messages according to their first
element

remote flatspace motex send data to any receive object
repack flatspace zexy (re)pack atoms to packages of a given size
repeat flatspace zexy repeat a message several times
scrolllist displays and scrolls a text in a patch window

segregate segregate the input to various outlets,
depending on the type

sendlocal sl receivelocal rl ggee send messages locally per canvas

GLUE 212

serialize cxc flatspace ggee turn a stream of floats into a list
sguigot jmmmp spigot with GUI
sieve ekext takes integers and maps them to floats

simile ekext flatspace compare two numbers according to an error
window

slider sliderh ggee slider from ggee
sort flatspace zexy shell-sort a list of floats
soundfile_info flatspace iemlib show the header data of a wav file
speedlim maxlib_speedlim cyclone iemlib speed limit for incoming messages
spell cyclone convert input to ascii values
split maxlib_split cyclone iemlib look for a range of numbers
split_my_msgs hcs split a strem of messages
split_path flatspace hcs like splitfilename
split3 iemlib part a numeric stream into 3 ways
splitfilename flatspace iemlib split into path and filename
spray cyclone distribute an integer to a numbered outlet
sprinkler flatspace dynamic control message dissemination
sprintf cyclone format a message of strings and numbers
sroute list-abs settable route
state flatspace ggee saves settings in a patch to a file

strcat markex prepends its text to any symbol that is sent to
it

strcmp flatspace zexy compare 2 lists as if they were strings
stripfilename flatspace iemlib strip the first or last characters of a symbol
strippath ext13 flatspace strip a path from a filename
subst flatspace motex self-similar substitution/diminution of rows

substitute cyclone substitue a symbol for another symbol in a
message

switch cyclone output a message from a specific inlet

sync flatspace motex extended trigger object based on sync from
jMax

t3_bpe flatspace iemlib time-tagged trigger break point envelope

take-two list-abs print all combinations of length 2 without
repetition

temperature flatspace maxlib output number of input changes in N ms

thresh cyclone combine numbers into a list that are received
close together

ticker flatspace ggee toggle from ggee
tilt flatspace maxlib measure "tilt" of input
toddle ggee bang that routes messages through
TogEdge cyclone report zero / nonzero transitions

toggle_mess flatspace iemlib control a message-box with multiple content
(abbr. tm)

transf_fader flatspace iemlib transforms a slider range

universal cyclone send a message to all instances of the same
class in this patch (and subatches if desired)

unroute flatspace maxlib merges all inputs into one output and
prepend an identifier

GLUE 213

unsymbol flatspace iemlib convert a symbol to a anything selector

unwonk unpack which sends unused symbols to the
last outlet

Uzi cyclone send a specified number of bangs as fast as
possible

xerox
zl cyclone multi purpose list processing object

Name Library/Path Function

Name 214

Math
Vanilla Objects
& | << >> && || % logical operators
+ - * / pow arithmetic
> >= = <= < relational operators
clip force a number into a range
max min greater or lesser of 2 numbers
mod div sin cos tan atan atan2 exp log
abs sqrt pow higher math

mtof ftom dbtorms rmstodb dbtopow
powtodb convert acoustical units

random pseudorandom integer generator
wrap wrap a number to range [0,1]
Extended Objects
runden set numbers behind the comma

. scalar multiplication of vectors (=lists of
floats)

1/x inv flatspace ggee takes the inverse of the input

about flatspace mjlib delivers a number that is "about" the same as
the input number

accum cyclone store, add to, and multiply a number
acos asin atan cyclone arc functions

anal cyclone generates a histogram of number pairs
received

attract1 base base3 gingerbreadman
henon hopalong ikeda latoocarfian
latoomutalpha latoomutbeta
latoomutgamma lorenz martin popcorn
quadruptwo rossler standardmap

flatspace attractors

autocal la-kitchen autocalibrating scaler (for sensors)

autoscale hcs mapping scales a stream of numbers with dynamic
input range

average gem-average flatspace markex average together a series of numbers
beta bilex cauchy expo gauss linear
poisson triang weibull flatspace maxlib random numbers distribution

breakpoint breakpoint_smooth mapping curves the input range with a double-linear
interpolator with 2 control parameters

bytemask debytemask mapping generate / decode a bitmask byte from 8 inlets
capture cyclone store and edit numbers
cart2pol convert cartesian coordinates to polar
cart2sph convert cartesian coordinates to spheric
cartopol poltocar cyclone cartesian to polar conversion

catch_extremum catch_extremum2 la-kitchen return the last locals minimum and maximum
values

center_point mapping convert 0-1 data into a center point with two
0-1 ranges

circular circular_seat circular_sigmoid mapping curves the input range with a double-circular
seat with 1 control parameter

Math 215

Clip cyclone limit numbers to a range
clip
correlation mapping correlation of 2 different streams
cosh sinh tanh cyclone flatspace hyperbolic functions
cubic_seat mapping curves the input range with cubic curves
curve mapping curves the input range

curve_exp curve_log mapping maps the input range to an exponential /
logaritmic curve

curve_fade mapping 3rd order polygone for natural fade
curve_graph mapping maps the input range to an arbitrary curve
db2v v2db flatspace iemlib db to rms conversion
dbtofad fadtodb iemlib convert midi-db to fader scale
deg2hid hid2deg hid conversion [hid]-range to degrees
deg2rad convert degree to radiant
degrees->mapping mapping->degrees mapping converts mapping â„� degrees
delta flatspace maxlib calculate 1st or 2nd order difference
diff_n mapping diferentiate the input

distance distance2d distance_n mapping distance from a point and a stream (normal,
2d, Nd)

divide flatspace maxlib like "/" but calculates result when second inlet
is changed

divmod flatspace maxlib calculates division and modulo
drunk cyclone output random numbers in a moving range
elliptic elliptic_seat elliptic_sigmoid mapping curves the input range with 2 ellipses
exponential_curve exponential_seat
exponential_sigmoid mapping curves the input range with a

double-exponential seat
expr vanilla expression evaluation
f2note flatspace iemlib converts frequency to notes + cents
fadtorms rmstofad iemlib fader scale to rms
ffpoly creb flatspace finite field polynomial
fir iir mapping filters
fir_filter la-kitchen fir filter with coefficient list
fir_hip_n fir_mean_n la-kitchen fir high / low-pass filter with order n
funbuff cyclone store x,y pairs of numbers together
fwarp creb flatspace tangent warp frequency
gaussian mapping generate gaussian curve

hid_average hid_smooth hid smooths a stream of numbers through
weighted averaging

hid_centered hid convert 0-1 to -1-1
hid_cube hid_cuberoot hid_exp
hid_log hid_square hid_squareroot hid maps the input range to the chosen curve

hid_graph hid draw an arbitrary curve, which is applied to
the input range

hid_invert hid inverts the stream of numbers

hid_lowpass hid smooths a stream of numbers through audio
conversion + lowpass filtering

hid_polar hid converts cartesian to polar coordinates
hid_spiral hid

Math 216

converts cartesian to spiral in polar
coordinates

hid2rad rad2hid hid conversion [hid]-range to radians
Histo cyclone generates a histogram of the received numbers

history flatspace maxlib calculates the average of the items (floats) that
came in within the last N miliseconds

iir_hip iir_lop la-kitchen iir high / low-pass filter
invert flatspace markex non-zero numbers to 0, 0 to 1
limit flatspace maxlib limits input to lie between boundaries
list-accum list-abs add all floats in a list
list-add list-abs add two lists element by element
list-centroid list-abs calculates the centroid of a mass of a float-list
list-dotprod list-abs dot-product of two float-lists
list-emath list-abs do math on float-lists element by element

list-equalize list-abs scale a float-list so that all float elements sum
up to 1

list-geometric-mean list-abs calculate the geometric mean of a float-list
list-harmonic-mean list-abs calculate the harmonic mean of a float-list

list-inter list-abs elementwise linear interpolation between two
float-lists

list-inter-many list-abs elementwise linear interpolation between
several internally-stored float-lists

list-invint list-abs inverse intervals of a float-list
list-math list-abs simple mathematical operations on lists
list-mean list-abs calculates the arithmetical mean of a float-list
list-minmax list-abs find minimum and maximum in a float-list
list-mult list-abs multiply two float-lists
list-normalize list-abs normalizes a float-list

list-round list-abs round all numbers in a float-list to a nearest
multiple

list-sub list-abs subtract two float-lists element by element
list-unitvec list-abs normalize a float-list geometrically

logistic_sigmoid mapping curves the input range with a
double-exponential seat

mandelbrot ext13 flatspace z=z*z+c
mavg flatspace zexy moving average filter

max_n min_n la-kitchen return the maximum / minimum from the last
n values

maximum cyclone output the greatest in a list of numbers

mean cyclone find the running average of a stream of
numbers

mean flatspace zexy get the mean value of a list of floats
minimum cyclone output the smallest in a list of numbers
minmax flatspace zexy get minimum and maximum of a list of floats

minus flatspace maxlib like "-â„� but calculates result when leftmost
or second inlet is changed

mlife flatspace maxlib cellular automata object
mtosr bsaylor flatspace converts MIDI note value to samplerate

Math 217

multi flatspace maxlib like "*" but calculates result when leftmost or
second inlet is changed

n2m flatspace mjlib note to midi

notescale hid scales a stream of numbers to MIDI note
numbers

offer cyclone store x, y pairs of values (x is int only)
one_n la-kitchen returns 1 if the last n datas were non-zeros

past cyclone report when the input decreases beyond a
certain number

Peak cyclone output only numbers greater than the previous
pi hcs value of pi as accurate as Pd can manage

plus flatspace maxlib like "+" but calculates result when leftmost or
second inlet is changed

pol2cart convert polar coordinates to cartesian
pol2sph convert polar coordinates to spheric
prime flatspace zexy prime number detector
rad2deg convert radiant to degree
randomF randF flatspace markex floating point random number
range deprecated flatspace like [scale]

ratio creb flatspace multiply by 2^k so result is 1<=r<2
(transposer)

rewrap flatspace maxlib wraps floats back and forth into a range
rmstofad rms to fader characteristic
round_zero flatspace iemlib round numbers near zero to zero

scale scale input from a certain input range to lie
between output boundaries

seuil_n la-kitchen
returns 1 if the difference between the current
sample and the sample n before is up to the
threshold value

shuffle flatspace motex no-repeat random number generator
sph2cart convert spheric coordinates to cartesian
sph2pol convert spheric coordinates to polar

steady ekext flatspace takes stream of numbers, outputs max, min,
through

sum flatspace zexy sum the elements of a list
Through cyclone output only numbers smaller than the previous
triple-scale list-abs interpolate linearly between two points
tripleRand flatspace markex three random numbers
v+ v v* v/ math on a list of numbers
wrap wrap the float input between to boundaries

wrap maxlib_wrap flatspace iemlib
maxlib wraparound

zero_n.pd la-kitchen returns 1 if the last n datas were 0
zscale scale von pdjimmies

Math 218

Name Library/Path Function

Name 219

Time
Vanilla Objects
cputime measure CPU time
delay bang after time delay
line ramp generator
metro send â„�bangâ„� periodically ala metronome
pipe delay a message â„� a message â„�delay lineâ„�
realtime ask operating system for elapsed real time
timer measure logical time
Extended Objects
bpm calculate meanvalue of times between clicks
clock show (simple) clock
help timeconvert shows conversion of hertz, milliseconds, bpm, ...
clock jmmmp chronometer with display in secs
date flatspace zexy get system date
exciter controls a list of bang events scheduled in time
ISOdate
ISOtime hcs output current date / time in ISO format

linedrive cyclone scale numbers exponentially to use with line~
metroplus flatspace mjlib allows complex timing bangs to be delivered
metrum jmmmp metro with GUI

monorhythm flatspace mjlib basic rhythm pattern building blocks that allows polyrhthms to be
generated quickly and easily

prob cyclone weighted series of random numbers
pulse flatspace motex a better metro
step flatspace maxlib output sequence of numbers (similar to "line")
stoppuhr jmmmp chronometer with 2 layers
t3_delay flatspace iemlib time tagged trigger delay
t3_metro flatspace iemlib time tagged trigger metronom
t3_timer flatspace iemlib time tagged trigger timer
time flatspace zexy get system time
timebang flatspace maxlib send out bangs at given times of day
tripleLine flatspace markex line object for 3 values
uhr jmmmp shows the time
urn cyclone flatspace rng without duplicate numbers
utime cxc flatspace output seconds since epoch and microsecond faction
velocity flatspace maxlib get velocity of digits per second

Name Library/Path Function

Time 220

Midi
Vanilla Objects

makenote send note-on messages and schedule note-off
for later

notein ctlin pgmin bendin touchin
polytouchin midiin sysexin MIDI input

noteout ctlout pgmout bendout
touchout polytouchout midiout MIDI output

stripnote take note-off messages out of a MIDI stream
Extended Objects
beat flatspace maxlib beat tracker
Borax cyclone reports current info on note on/off
borax flatspace maxlib analyse incoming midi notes
chord flatspace maxlib tries to detect chords
flush cyclone provide note offs for held notes
gestalt flatspace maxlib gestalt detection for monophonic melodies
m-i jmmmp automatic conversion of MIDI controller

midiflush cyclone send note offs for all hanging notes in a raw
midi state

midiformat midiparse cyclone de/construct midi messages
mk jmmmp fast visual control of MIDI inputs
pitch flatspace maxlib get info about pitch
rhythm flatspace maxlib detects the beat of rhythmic patterns

score flatspace maxlib score follower that tries to match incoming
MIDI data to a score stored in an array

sustain cyclone hold note offs and output them on request
xbendin xbendin2 xbendout
xbendout2 cyclone extra precision midi pitchbend objects (14 bit)

xnotein xnoteout cyclone interpret midi messages with release velocity

Name Library/Path Function

Midi 221

Tables
Vanilla Objects
tabread read numbers from a table

tabread4 read numbers from a table with 4-point
interpolation

tabwrite write numbers to a table
soundfiler read and write soundfiles to arrays
Extended Objects
arraycopy flatspace maxlib copy data from one array to another
arraysize flatspace returns the size of an array
envgen flatspace ggee envelope generator
pianoroll graphical sequencer controller
tabdump flatspace zexy dump the contents of a table as a list
tabminmax flatspace zexy get minimum and maximum of a table

tabread4 interpolating tabread (obsolete since
pd>=0.30)

tabset flatspace zexy set a table with a list of floats
tabreadmix~ creb flatspace overlap add tabread clone

Name Library/Path Function

Tables 222

Misc
Vanilla Objects
loadbang send „bang" automatically when patch loads
serial serial device control for NT only
netsend send Pd messages over a network
netreceive listen for incoming messages from network
qlist text-based sequencer
textfile read and write textfiles
openpanel „open" dialog
savepanel „save as" dialog
bag collection of numbers
poly MIDI-style polyphonic voice allocator
key keyup numeric key values from keyboard
keyname symbolic key name
declare set search path and/or load libraries
Extended Objects
hid hcs HID protocoll reader
classpath hcs returns each path in the global classpath
import hcs loads libraries from the path to local namespace
parazit gnd

netclient flatspace maxlib simple client that connects to netserver or to pd's native
netreceive object

netdist flatspace maxlib distribute data to several netreceive
netrec flatspace maxlib ?report of netsend connections?
netserver flatspace maxlib netclient
getenv flatspace motex sends value of an environment variable argument on bang
init ii flatspace iemlib initialize anything by loadbang
grid
iem_pbank_csv flatspace iemlib parameter-bank with csv-syntax
mapper
msgfile flatspace zexy read and write messages into text files
operating_system flatspace zexy get the current OS
pool a hierarchical storage
stripdir flatspace ggee strips all leading directories from a path
system flatspace motex send a system message to the console
vbap ggee vector based amplitude panning external
wintablet external for using Wacom tablets on Windows
ENV cxc flatspace get and set environment variables
proc cxc flatspace interface to the linux proc filesystem

comment cyclone text comment with some formatting options, meant to be
Max/MSP compatible

mousefilter cyclone passes numbers only when mousebutton is up
MouseState cyclone report mouse x/y/deltax/y and buttonpress
linuxevent deprecated flatspace outputs raw events from the linux event system
linuxmouse deprecated flatspace takes events directly from a linux event device
filesize fsize ext13 flatspace gives size of a file

Misc 223

wavinfo ext13 flatspace get samples, channels, bitspersample, amplerate of a file
beatpipe flatspace event scheduler / quantizer
comport flatspace serial port interface
folder_list flatspace hcs listing of files based on a wildcard pattern
getdir flatspace ggee get the directory this patch is operating in
ifeel flatspace hcs control the pulse of an iFeel mouse
image flatspace ggee incorporate images
openpatch opa flatspace open a patch file
popen flatspace shell commands
popup flatspace iemlib popup menu
shell flatspace ggee run commands in a UNIX shell
failsafe hcs turns off dsp and / or quits pd
file_type hcs find the file type of a file
gid->group_name
group_name->gid hcs convert group name <-> GID

group hcs fetch password data based on a UID or group name
passwd hcs fetch password data based on a UID or username
stat hcs gets information about files
uid->username
username->uid hcs convert group name <-> GID

version hcs version of the currently running Pd
joystick hid use a joystick device with Pd
keyboard hid use a keyboard device with Pd
keygate hid mapping simple keyboard-controlled gate
mouse hid use a mouse device with Pd
datei-l datei-o jmmmp send the message „open ..."
datei-r jmmmp send the message „read ..."
datei-w jmmmp send the message „write ..."
pd-colors jmmmp Tcl/Tk and data structure's color palettes
gui-edit jmmmp GUI-editor abstraction
oscD jmmmp counts received OSC messages
oscS jmmmp interface for [sendOSC]
tastin jmmmp gate for keyboard input
keybang keyboardkeys key bang GUI
keytoggle keyboardkeys key toggle GUI
keyupdown keyboardkeys increase/decrease of any value GUI

Name Library/Path Function

Name 224

Audio Glue
Vanilla Objects
adc~ audio input
dac~ audio output
bang~ output bang after each DSP cycle
block~ specify block size and overlap
switch~ switch DSP on and off
catch~ throw~ summing signal bus and non-local connection
line~ audio ramp generator
vline~ high-precision audio ramp generator
threshold~ trigger from audio signal
snapshot~ convert a signal to a number on demand
vsnapshot~ deluxe snapshot~
samplerate~ get the sample rate
readsf~ read a soundfile
receive~ send~ one-to-many nonlocal signal connections
writesf~ write audio signals to a soundfile
sig~ convert numbers to audio signal
Extended Objects
blockmirror~ flatspace zexy play back a signal-vector in a time-reversed way
blockswap~ flatspace zexy swap the upper and lower half of a signal-vector
cooled~ sound editor
dfreq~ flatspace zexy frequency detector that counts zero-crossings
envrms~ flatspace zexy like env~, but outputting rms instead of dB
fade~ flatspace iemlib fade-in fade-out shaper (need line~)
iem_blocksize~ flatspace iemlib current blocksize of a window
iem_samplerate~ flatspace iemlib samplerate of a window in Hertz
int_fract~ iemlib split signal float to integer and fractal part
Line~ cyclone line~ with lists and bang in the end
mp3play~ flatspace iemlib mpeg layer III player
pack~ unpack~ flatspace zexy convert signals to float-packages
oggamp~ flatspace pdogg streaming client
oggcast~ flatspace pdogg stream to IceCast2 or JRoar
oggread~ flatspace pdogg file player
oggwrite~ flatspace pdogg strean to file
ogglive~
patcher~ 16x16 patchbay inspired by Synthi AKS
pdf~ flatspace zexy probability density function
peakenv~ flatspace iemlib signal-peak-envelope
polygate~ flatspace motex switch between multiple signal inputs
prvu~ flatspace iemlib peak- rms- vu-meter
pvu~ flatspace iemlib peak- vu-meter
rvu~ flatspace iemlib rms- vu-meter
rlshift~ shift signal vector elements left or right
Scope~ cyclone
sfplay sfrecord flatspace zexy

Audio Glue 225

play back/record (multichannel) soundfiles <-
NICHT VERWENDEN

sfread~ sfwrite~ flatspace ggee NICHT VERWENDEN
sigzero~ flatspace zexy detects whether there is signal or not
spigot~ signal router
tavg~ flatspace zexy arithmetic mean of a signal between two bangs
t3_sig~ flatspace iemlib time tagged trigger sig~
t3_line~ flatspace iemlib time tagged trigger line~
bthresher~ similar to thresher~ but with more control
thresher~ an amplitude/frequency sensitive gating object
unsig~ iemlib signal to float converter
xgroove~
xrecord~
xplay~
zerocross~ noise detector, counts zero crossings of signal
count~ cyclone sample counter
record~ cyclone read and write sample values
simile~ ekext flatspace compare two signals according to an error window
zeroxpos~ ekext flatspace find n-th zero crossing in frame
piperead~ pipewrite~ ext13 flatspace like sfread and write, but non-blocking
throw13~ t13~
catch13~ c13~ flatspace [ext13] like catch~ and throw~, with set messages

receive13~ send13~ flatspace [ext13] like r and s, with set messages
streamin~ streamout~ flatspace ggee streaming client
blocksize_in_ms hcs blocksize in ms
pwm~ hcs pulse width modulation at audio rate
mat~ met~ maat~
meet~ jmmmp mono/stereo level meter with amplitude control

snaps~ jmmmp snapshot~ GUI implementation

Name Library/Path Function

Name 226

Audio Math
Vanilla Objects
+~ -~ *~ /~ operators on audio signals
max~ min~ maximum or minimum of 2 inputs
clip~ restrict a signal to lie between two limits
q8_rsqrt~ signal reciprocal square root
q8_sqrt~ signal square root
wrap~ remainder modulo 1
fft~ ifft~ forward and inverse complex FFT
rfft~ rifft~ forward and inverse real FFT

framp~ estimate frequency and amplitude of FFT
components

mtof~ ftom~ rmstodb~ dbtorms~
rmstopow~ powtorms~ conversions for audio signals

pow~ log~ exp~ abs~ math
Extended Objects
>~, <~, ==~, &&~, ||~ logical operators

abs~ cyclone flatspace
markex zexy absolute value of a signal

absgn~ flatspace zexy absolute value + signum
addl~ iemlib signal addition with line~
amp~ hcs smooth amplitude control
atan2~ cyclone flatspace ggee get the phase from a imaginary value of the fft
avg~ cyclone flatspace zexy arithmetic mean of 1 signal-vector
Clip~ cyclone limit numbers to a range
divl~ iemlib signal divison with line~
exp~ log~ signal math
expr~ fexpr~ vanilla expression evaluation
ln~ flatspace motex log~
m2f~ flatspace iemlib convert MIDI pitch to frequency (obsolete)
mull~ iemlib signal multiplication with line~
multiline~ flatspace zexy line~d multiplication of multiple signals
pol2rec~ flatspace motex inverse of rec2pol~
rec2pol~ flatspace motex convert rectangular coordinates to polar
round~ iemlib round signal float to nearest integer
sgn~ flatspace zexy signum of a signal

sin_phase~ flatspace iemlib calculate phase difference between 2
sine-waves, in samples

subl~ iemlib signal subtraction with line~
t3_sig~ convert numbers to signal with sample accuracy
bfft~ creb flatspace reordered fft
bitsplit~ creb convert signal to binary vector

blocknorm~ creb normalize a (set of) dsp block(s) (i.e. for
spectral processing)

dwt~ creb flatspace discrete wavelet transform
idwt~ creb flatspace discrete inverse wavelet transform

Audio Math 227

delta~ cxc cyclone flatspace difference between this and last sample
acos~ asin~atan~ cyclone arc functions
acosh~ cyclone
asinh~ cyclone
atanh~ cyclone
average~ cyclone
cosh~ sinh~ tanh~ cyclone hyperbolic functions
cosx~ sinx~ tanx~ cyclone
log~ cyclone
cartopol~ poltocar~ cyclone cartesian to polar conversion
pow~ cyclone

framescore~ framespect~ ekext flatspace calculates weighted similarity value for 2 signal
vectors

hssc~ ekext flatspace highest significant spectral component
mandelbrot~ ext13 flatspace z=z*z+c
bwin~ flatspace multiplies a signal block with a window
bmax~ flib gives block max
irreg~ flib irregularity

melf~ flib creates a mel spaced filterbank to generate mel
frequency cepstral coefficients

mspec~ flib get amplitude or power spectrum from fft

peak~ flib get spectral peaks from magnitudes / estimate
frequency

pspec~ flib get phase spectrum from fft
sc~ flib spectral centroid
scm~ flib spectral flatness measure
ss~ flib spectral smoothness
trist~ flib tristimulus x, y, z

Name Library/Path Function

Name 228

Audio Oscillators and Tables
Vanilla Objects
phasor~ sawtooth generator
cos~ cosine waveshaper
osc~ cosine wave oscillator
tabwrite~ write a signal in an array
tabplay~ play a table as a sample (non-transposing)
tabread~ table lookup
tabread4~ 4-point interpolating table lookup
tabosc4~ 4-point interpolating table oscillator

tabsend~ writes one block of a signal continuously
to an array

tabreceive~ read a block of signal from an array
continuously

Extended Objects
agogo~
bamboo~
blotar~

bonk~ vanilla/bonk~ attack detector for small percussion
instruments

bowed~
bowedbar~
brass~
buzz~ subctractive synthesis without filters
cabasa~

cavoc~ An 8 rule cellular automata that generates
spectra

cavoc27~ A 27 rule cellular automata object

chase~ uses a sync signal to determine who gets
out which outlet

clarinet~
dcblock~ blocks DC components in audio signals
dirac~ flatspace zexy produces a unit:sample:sequence
escalator~
fiddle~ vanilla pitch estimator and sinusoidal peak finder
flute~
formant~ formant synthesis

gq~ equalizer with variable number of filter
banks

guiro~

LFO_noise~ flatspace iemlib 2-point-interpolated time-stretched white
noise

loop~ extra flatspace loop~ phase generator for looping samples
lrshift~ flatspace lrshift~ shift signal vector elements left or right
mandolin~
marimba~
morse flatspace mjlib convert text to morse code

Audio Oscillators and Tables 229

munger~ granular sampling instrument

noish~ noisi~ flatspace zexy draws a random number every n samples
and interpolates between

paf~ 0.06
pink~ cyclone iemlib pink noise (-3dB per octave)
plucked~
rechteck~ a squarewave generator
scrub~
sinesum examples of sinesum
sleigh~ sleigh bell
step~ flatspace zexy unit:step sequence or a rectangle:window

susloop~ bsaylor flatspace another phase generator for sample
looping

syncgrain~ implements synchronous granular
synthesis

vibraphone~
testsig~ choose noise, osc, phasor by clicking

dynwav~ creb flatspace dynamic wavetable: use a signal block as
wavetable

junction~ creb flatspace circulant lossless signal junction

sbosc~ creb smallband oscillator (i.e. for formant
synthesis)

scrollgrid1D~ creb a stabilized scroll grid chaotic oscillator
index~ cyclone sample playback without interpolation
lookup~ cyclone transfer funcion lookup table
peek~ cyclone read and write sample values
play~ cyclone position based sample playback
rand~ cyclone bandlimited random noise
wave~ cyclone variable size wavetable
ambi_rot iem_ambi ambisonic rotation
ambi_encode ambi_decode ambi_decode3
ambi_decode_cube iem_ambi ambisonic encoding / decoding

bin_ambi_reduced_decode_fft2
bin_ambi_reduced_decode_2 iem_bin_ambi ambisonic binaural encoding / decoding

Name Library/Path Function

Name 230

Audio Filters
Vanilla Objects
env~ envelope follower
vcf~ voltage-controlled bandpass filter
noise~ uniformly distributed white noise
hip~ one-pole high pass filter
lop~ one-pole low pass filter
bp~ bandpass filter
biquad~ 2-pole-2-zero filter
samphold~ sample and hold unit
print~ print out raw values of a signal
rpole~ real one-pole (recursive) filter, raw
rzero~ real one-zero (non-recursive) filter, raw
rzero_rev~ real one-zero (non-recursive) „reverse" filter, raw
cpole~ complex one-pole (recursive) filter, raw
czero~ complex one-zero (non-recursive) filter, raw

czero_rev~ complex one-zero (non-recursive) „reverse" filter,
raw

Extended Objects
bandpass equalizer highpass
highshelf hlshelf lowpass lowshelf
notch

flatspace ggee coefficients for biquad~

1p1z iemlib control IIR filter 1. order
aenv~ bsaylor flatspace asymptotic ADSR envelope generator
allpass~ cyclone allpass filter
ap1~ ap2~ iemlib allpass 1. / 2. order
bpq2~ bp2~ iemlib bandpass 2.order with Q inlet
bpw2~ iemlib bandpass 2.order with bandwidth inlet
bsq2~ iemlib bandstop 2.order (notch) with Q inlet
bsw2~ iemlib bandstop 2.order (notch) with bandwidth inlet
burrow~ a cross-referenced filtering object
centerring~ a spectral modulation object
codepend~ a classic block convolution object
comb~ cyclone comb filter
complex mod~ frequency shifter
compressor~ audio compressor
complex-mod~ vanilla frequency shifter
convol~ convobrosfilter
crossx~ a cross synthesis object with gating
cverb~ implementation of the Csound reverb
dentist~ a partial knockout object
disarrain~ an interpolating version of disarray~
disarray~ a spectral redistribution object
drown~ a noise reduction (or increase) object
enveloper~ the (old???) envelope generator of iemlib
ether~ another spectral compositing object

Audio Filters 231

filter~ flatspace iemlib multiple object for all useful IIR-filters 1. and 2.
order like lowpass, highpass, bandpass, bandstop,
allpass, etc

filterbank~ outputs the frequence response against a set of
band pass filters

filtersme1~ a hard filtering of low(soft) frequencies
filtersme2~ filtering by drawing with mouse in array
FIR~ flatspace iemlib convolve a signal with an array
freeverb~ freeverb Schroeder/Moorer reverb model
hilbert~ vanilla phase quadrature of input for complex modulation
hml_shelf~ flatspace iemlib high-mid-low-shelving filter
hp1~ hp2~ iemlib highpass 1. / 2. order
hp2_butt~ hp3_butt~ hp4_butt~
hp5_butt~ hp6_butt~ hp7_butt~
hp8_butt~ hp9_butt~ hp10_butt

iemlib highpass 2.3.4.5.6.7.8.9.10.order with butterworth
characteristic

hp2_cheb~ hp3_cheb~ hp4_cheb~
hp5_cheb~ hp6_cheb~ hp7_cheb~
hp8_cheb~ hp9_cheb~ hp10_cheb~

iemlib highpass 2.3.4.5.6.7.8.9.10.order with chebyshev
characteristic

hp2_bess~ hp3_bess~ hp4_bess~
hp5_bess~ hp6_bess~ hp7_bess~
hp8_bess~ hp9_bess~ hp10_bess~

iemlib highpass 2.3.4.5.6.7.8.9.10.order with bessel
characteristic

hp2_crit~ hp3_crit~ hp4_crit~
hp5_crit~ hp6_crit~ hp7_crit~
hp8_crit~ hp9_crit~ hp10_crit~

iemlib highpass 2.3.4.5.6.7.8.9.10.order with critical
damping

leaker~ a sieve based cross fader
limiter~ flatspace zexy a limiter/compressor module
lp1~ lp2~ iemlib lowpass 1. / 2. order
lp1_t~ flatspace iemlib lowpass 1.order with time_constant inlet
lp2_butt~ lp3_butt~ lp4_butt~
lp5_butt~ lp6_butt~ lp7_butt~
lp8_butt~ lp9_butt~ lp10_butt~

iemlib lowpass 2.3.4.5.6.7.8.9.10.order with butterworth
characteristic

lp2_cheb~ lp3_cheb~ lp4_cheb~
lp5_cheb~ lp6_cheb~ lp7_cheb~
lp8_cheb~ lp9_cheb~ lp10_cheb~

iemlib lowpass 2.3.4.5.6.7.8.9.10.order with chebyshev
characteristic

lp2_bess~ lp3_bess~ lp4_bess~
lp5_bess~ lp6_bess~ lp7_bess~
lp8_bess~ lp9_bess~ lp10_bess~

iemlib lowpass 2.3.4.5.6.7.8.9.10.order with bessel
characteristic

lp2_crit~ lp3_crit~ lp4_crit~
lp5_crit~ lp6_crit~ lp7_crit~
lp8_crit~ lp9_crit~ lp10_crit~

iemlib lowpass 2.3.4.5.6.7.8.9.10.order with critical
damping

maverage~ moving average filter with IIR
mindwarp~ a spectral formant warping object
moog~ flatspace ggee signal controlled "moog" resonant lowpass
morphine~ a morphing object
multiverb~ Schroeder/Moorer reverb model
multyq~ a four band filter
pan~ equal power stereo panning

pansig~ flatspace motex same as above but takes a signal modulator rather
than a float

Audio Filters 232

para_bp2~ flatspace iemlib parametril bandpass 2. order

pin~ flatspace mjlib randomly delivers the input signal to either the
right or left outlet with a given probability

pitchnoise~ Harmonic/inharmonic monophonic timbre
separator

presidency~ a spectral sampler with pitch control
pvgrain~ a spectrum analyzer for granular resynthesis
pvharm~ a harmonizer
pvoc~ an additive synthesis phase vocoder
pvtuner~ a spectrum quantizer for tuning to arbitrary scales
pvwarp~ a non-linear frequency warper
reanimator~ an audio texture mapper

resent~ similar to residency~ but with independent bin
control

residency~ a spectral sampler useful for time scaling

scrape~ a noise reduction (or increase) object with
frequency control

shapee~ a frequency shaping object
swinger~ a phase swapping object
taint~ a cross synthesis object
vacancy~ a spectral compositing object
xsyn~ a cross synthesis with compression object
pvcompand~ a spectral compressor/expander object
quantize~ flatspace zexy quantize a signal with a variable step-number
mov_avrg_kern~ flatspace iemlib moving average filter kernel

mypol2rec~ fft stuff, needed as abstraction for some other
patches

myrec2pol~ fft stuff, as above (ggee)
para_pb2~ parametrical bandpass ???
rbpq2~ iemlib resonance bandpass 2.order with Q inlet
rbpw2~ iemlib resonance bandpass 2.order with bandwidth inlet
reccombfilter~ rough combfilter feedback

rev1~ vanilla series of allpass with exponentially growing delay
lines

rev2~ vanilla simple 1-in, 4-out reverberator
rev3~ vanilla hard-core, 2-in, 4-out reverberator
schroeder~ schroeder reverb
swap~ flatspace zexy byte-swap a 16bit signal

svf~ bsaylor cyclone
flatspace state-variable filter

vcf_hp2~ vcf_hp4~ vcf_hp6~
vcf_hp8~ iemlib highpass 2.4.6.8.order with freq and Q signal

inlets
vcf_lp2~ vcf_lp4~ vcf_lp6~
vcf_lp8~ iemlib lowpass 2.4.6.8.order with freq and Q signal

inlets
vcf_bp2~ vcf_bp4~ vcf_bp6~
vcf_bp8~ iemlib bandpass 2.4.6.8.order with freq and Q signal

inlets
vcf_rbp2~ vcf_rbp4~ vcf_rbp6~
vcf_rbp8~ iemlib resonance bandpass 2.4.6.8.order with freq and Q

signal inlets

Audio Filters 233

bdiag~ creb flatspace block diagonal state space system (spectral
processor)

cheby~ creb flatspace chebyshev polynomial waveshaper
dist~ creb flatspace dist~ waveshaper
eadsr~ creb flatspace exp. attack decay sustain release
ead~ creb flatspace exp. attack decay
ear~ creb flatspace exp. attack release
lattice~ creb flatspace lattice~ filter
permut~ creb flatspace random permute a signal block
qmult~ creb flatspace multiply 2 quaternion signals

qnorm~ creb flatspace normalize a quaternion signal (or any 4 channel
sig)

resofilt~ creb a reso filter (4pole, 3pole)
xfm~ creb flatspace coupled frequency modulation

reson~ cxc cyclone flatspace
markex interpolating reson filter

pan_gogins~ deprecated flatspace modification of pan~

voiding_detector~ ekext estimates wether a frame of speech is voiced or
unvoiced

scramble~ ext13 flatspace big fun with spoken words or beats
ap1c~ ap2c~ iemlib allpass 1. / 2. order for filter cascades
hp1c~ hp2c~ iemlib highpass 1. / 2. order for filter cascades
lp1c~ lp2c~ iemlib lowpass 1. / 2. order for filter cascades

Name Library/Path Function

Name 234

Audio Delay
Vanilla Objects
delwrite~ writes a signal in a delay line
delread~ read a signal from a delay line

vd~ reads a signal from a delay line at a variable delay time
(4-point-interpolation)

Extended Objects
blockdelay~ high-resolution delay for smaller delay times
delay~ cyclone delay incoming signal for a number of samples
z~ flatspace zexy samplewise delay
fdn~ creb flatspace feedback delay network

Name Library/Path Function

Audio Delay 235

Subwindows
Vanilla Objects
pd define a subwindow
inlet outlet control inlet / outlet
inlet~
outlet~ audio inlet / outlet

table array of numbers
Extended Objects

dyn~ dynamic object
mangement

py python script objects

Name Library/Path Function

Subwindows 236

Data Templates and Acessing Data
Vanilla Objects
drawcurve filledcurve draw a curve
drawpolygon filledpolygon draw a polygon
plot draw array elements of scalars

drawnumber draw numeric fields for data
structures

struct declare the fields in a data
structure

pointer remember the location of a
scalar in a list

get get values from a scalar
set set values in a scalar

element get pointer to an element of an
array

getsize get the number of elements of
an array

setsize resize an array
append add item to a list

sublist get a list from a field of a
scalar

Name Library/Path Function

Data Templates and Acessing Data 237

GEM
Extended Objects
accumrotate manipulation accumulated rotation
alpha manipulation enable alpha blending
ambient ambientRGB manipulation ambient coloring
camera
circle geometric renders a circle
color colorRGB manipulation colouring
colorSquare geometric renders a square with several colors
cone geometric renders a cone
cube geometric renders a cone
cuboid geometric renders a cuboid box
curve geometric renders a bezier-curve
curve3d geometric renders a 3d bezier-curve
cylinder geometric renders a cylinder
depth turn on / off depth test
diffuse diffuseRGB manipulation diffuse colouring
disk geometric renders a disk
emission emissionRGB manipulation emission colouring
fragment_program shader load and apply an ARB fragment shader
gemhead connect gem objects to the window manager
gemkeyboard gemkeyname keyboard events in the gem window
gemlist_info information get current transformation of a gemlist
gemmouse mouse events in the gem window
gemwin access to the window manager
glsl_fragment shader load a GLSL fragment shader
glsl_program shader link GLSL-modules into a shader program
glsl_vertex shader load a GLSL vertex shader
hsv2rgb rgb2hsv convert between RGB and HSV colorspace
imageVertp geometric map luminance to height
light world_light non-geometric adds a point-light to the scene
pix_blobtracker pix analysis blob detector and tracker
rgb2yuv yuv2rgb convert between RGB and YUV colorspace
linear_path spline_path reads out a table
model geometric renders an Alias/Wavefront-Model

multimodel geometric load multiple an Alias/Wavefront-Model and
renders one of them

newWave geometric renders a waving square (mass-spring-system)
ortho manipulation orthographic rendering
part_color particle system defines color of particles
part_damp particle system change velocity of particles
part_draw particle system draw a particle system
part_follow particle system particle follow each other
part_gravity particle system sets the gravity-vector of the particle system
part_head particle system starts a particle system
part_info particle system

GEM 238

gives all available information of all the
particles in the system

part_killold particle system kill all particles which are older than the kill
time

part_killslow particle system kill all particles which are slower than the kill
speed

part_orbitpoint particle system make the particles orbit about the postion x,y,z
part_render particle system draw a particle system

part_sink particle system sets up a sink for the particles within the
system

part_size particle system change size of the particles
part_source particle system add a particle source
part_targetcolor particle system change the color of the particles
part_targetsize particle system change the size of the particles

part_velcone particle system sets a cone to be the velocity-domain of new
particles

part_velocity particle system sets velocity of new particles

part_velsphere particle system sets a sphere to be the velocity-domain of new
particles

part_vertex particle system add a particle at the specified outset
pix_2grey pix converts a pix to greyscale
pix_a_2grey pix converts a pix to greyscale based on alpha
pix_add pix image add 2 images
pix_aging pix apply a super8-like aging effect
pix_alpha pix set the alpha values of an RGBA-pix
pix_background pix separate an object from a background
pix_backlight pix blacklighting effect
pix_biquad pix_movement pix_tIIR pix timebased effect timebased IIR filter
pix_bitmask pix mask out pixels
pix_blob pix get the „center of gravity" of an image
pix_blur pix deprecated, use pix_motionblur
pix_buffer pix storage place for a number of images
pix_buffer_read pix_buffer_write pix read / write images to a pix_buffer
pix_buf pix buffer a pix
pix_chroma_key pix mix mix 2 images based on their color
pix_clearblock pix clear an image without destroying the picture

pix_coloralpha pix calculate the alpha-channels from the RGB
data

pix_colormatrix pix transform the pixel values by a matrix
pix_color pix set the color-channels of an image
pix_colorreduce pix reduce the number of color in the image
pix_compare pix mix 2 images based on their luminance
pix_composite pix mix alpha-blend 2 images
pix_contrast pix change contrast and saturation of an image
pix_convert pix convert the colorspace of an image
pix_convolve pix apply a convolution kernel
pix_coordinate pix set the texture coordinates for a pix

GEM 239

pix_crop pix get a subimage of an image
pix_curve pix apply color curves to an image
pix_data pix get pixel data from an image
pix_deinterlace pix deinterlace an image
pix_delay pix timebased effect delay a series of images
pix_diff pix mix get the difference between 2 pixes
pix_dot pix make dotty images
pix_draw pix draw pixels on the screen
pix_dump pix dump all the pixel data of an image
pix_duotone pix reduce the number of colors by thresholding
pix_fiducialtrack pix analysis fiducial [targe] detector and tracker
pix_film pix source load in a movie file
pix_flip pix flips the image along an axis
pix_freeframe pix run a FreeFrame object
pix_gain pix multiply pixel values
pix_grey pix convert the colorspace of an image into grey
pix_halftone pix fx make halftone patterns
pix_histo pix excerpt histograms of an image
pix_hsv2rgb pix_rgb2hsv pix convert between RGB and HSV
pix_imageInPlace pix source loads multiple image files
pix_image pix source loads an image file
pix_indycam pix create pixes from an SGI video camera
pix_info pix
pix_invert pix invert an image
pix_kaleidoscope pix kaleidoscope effect
pix_levels pix level adjustment
pix_lumaoffset pix offset pixels depending on the luminance
pix_mask pix mix mask out a pix
pix_mean_color pix get the mean color of the current image
pix_metaimage pix display a pix by itself
pix_mix pix mix 2 images based on mixing factors
pix_motionblur pix timebased effect apply motionbluring on a series of images
pix_movement2 pix timebased effect timebased IIR filter for motion detection
pix_movie pix source load in a movie file
pix_multiblob pix analysis blob detector for multiple blobs
pix_multiimage pix source loads multiple image files
pix_multiply pix mix multiply 2 images
pix_normalize pix normalize an images
pix_offset pix add an offset to the color
pix_pix2sig~ pix_sig2pix~ pix convert images <-> signals
pix_posterize pix posterialization effect
pix_puzzle pix shuffle an image
pix_rds pix random dot stereogram for luminance
pix_record pix output write a sequence of pixes to a movie file
pix_rectangle pix draw a rectangle into a pix
pix_refraction pix display a pix through glass bricks

GEM 240

pix_resize pix resize an image
pix_rgba pix convert the colorspace of an image to RGBA
pix_roll pix (sc)roll through an image
pix_rtx pix timebased effect Realtime vs. X tranformation
pix_scanline pix scan lines of an image
pix_set pix set the pixel data of an image

pix_share_read pix_share_write pix read / write pixels from a shared memory
region

pix_snap2tex pix take a screenshot and texture it
pix_snap pix snap a pix of the frame buffer
pix_subtract pix mix subtract 2 images
pix_takealpha pix mix transfer the alpha channel
pix_texture pix apply texture mapping

pix_threshold_bernsen pix apply dynamic thresholds to pixes for
binarization

pix_threshold pix apply a threshold to pixes

pix_videoDS pix source live video capture with VideoShow (windows
only)

pix_video pix source open a camera and get input

pix_write pix make a snapshot of the frame buffer and write
it to a file

pix_yuv pix convert the colorspace of an image to YUV
pix_zoom pix zoom the pixels
polygon geometric renders a polygon
polygon_smooth manipulation turn on / off polygon smoothing
pqtorusknots geometric renders a 3d knot
primTri geometric renders a triangle with gradient colors
rectangle geometric renders a rectangle
render_trigger control triggers on rendering
ripple rubber geometric renders and distorts a square
rotate rotateXYZ manipulation rotation
scale scaleXYZ manipulation scale
scopeXYZ~ geometric DSP 3d oscilloscope
separator manipulation
shearXY shearXZ shearYX shearYZ
shearZX shearZY manipulation shear

shininess manipulation shininess of the material
slideSquares geometric renders sliding squares
specular specularRGB manipulation specular coloring
sphere geometric renders a sphere
spot_light non-geometric adds a spot light to the scene
square geometric renders a square
teapot geometric renders a teapot
text2d text3d textextruded textoutline geometric renders a line of text
torus geometric renders a torus
translate translateXYZ manipulation translation
triangle geometric renders an equilateral triangle

GEM 241

tube geometric renders a complex tube
vertex_program shader set the ARB vertex shader

Name Library/Path Function

Name 242

PDP
Extended Objects
pdp_affine
pdp_agc automatic gain control
pdp_blur_hor horizontal blur effect
pdp_blur blur effect
pdp_blur_ver vertical blur effect
pdp_cheby3o
pdp_contrast contrast enhancement
pdp_conv_alledge all edge sensitive convolution filter
pdp_conv_emboss emboss effect
pdp_conv_smooth averaging convolution filter
pdp_conv_sobel_edge sobel edge detector
pdp_conv_sobel_hor vertical sobel edge detector
pdp_conv_sobel_ver horizontal sobel edge detector

pdp_diff difference between current and
previous frame

pdp_dither dither effect
pdp_gain3 independent gain for 3 channels
pdp_gradient gradient
pdp_grey
pdp_invert
pdp_m_inverse matrix inverse
pdp_motion_blur motion blur effect
pdp_motion_fade motion triggered fade-out effect
pdp_motion_phase motion phase shift effect
pdp_offset add an offset to an image
pdp
pdp_phase_hor horizontal phase shift effect
pdp_phase phase shift effect
pdp_phase_ver vertical phase shift effect
pdp_png_to load + convert a png file

pdp_pps measure number of packets per
second

pdp_qt_control
pdp_qtloop2~
pdp_qtloop~
pdp_saturation adjust colour saturation
pdp_save_png_sequence saves a png sequence
pdp_sub
pdp_tag tag a pdp message
pdp_xv_keycursor keyboard/mouse controller

PDP 243

Name Library/Path Function

Name 244

Physical Modelling
Extended Objects

iAmbient2D iAmbient3D flatspace ambient interaction − interaction between a
collection of masses and a commun environment

iCircle2D iCircle3D flatspace circle interaction − interaction between a
collection of masses and a circle

iCylinder3D flatspace cylinder interaction − interaction between a
collection of masses and a cylinder

iLine2D flatspace line interaction − interaction between a
collection of masses and a line

iPlane3D flatspace plane interaction − interaction between a
collection of masses and a plane

iSeg2D flatspace segment interaction − interaction between a
collection of masses and a segment

iSphere3D flatspace sphere interaction − interaction between a
collection of masses and a sphere

link link2D link3D flatspace link between 2 masses
mass mass2D mass3D flatspace get liaison forces and output position
tCircle2D tCircle3D tCube3D
tCylinder3D tLine2D tSeg2D
tSquate2D

flatspace test masse position

tLink2D tLink3D flatspace get position of masses, output forces
tPlane3D flatspace test interaction between mass and plane
tSphere3D flatspace test if a sphere is inside a mass

Name Library/Path Function

Physical Modelling 245

Obsolete
Vanilla Objects
scope~ use tabwrite~ now
namecanvas attach this canvas to a name
template use struct now
scalar draw a scalar on parent
Extended Objects

post_netreceive flatspace iemlib convert message lists with a prepended
float index

gemorb Gem respond to events of a SpaceOrb
gemtablet Gem respond to events of a graph-tablet

Obsolete 246

Glossary
(Names of other glossary entries are in bold when they first appear in an entry, while the names of Pd objects
appear in [square brackets].)

Glossary Terms

Abstraction
A reusable block of code saved as a separate Pd patch and used as if it were an object. Any
abstraction to be used must either be saved in the same working directory as the Pd patch it is used
in, or the directory it is saved in must be included in the path section of the Pd settings. Abstractions
can be opened by clicking on them, and the GUI elements inside can be displayed even when closed
by setting their properties to Graph on Parent. Inlets and outlets can be used to send and receive
information to and from an abstraction, as well as send and receive pairs.

ADC
Analog to Digital Converter - the line into Pd from the sound card. The Pd object for this is [adc~].

ADSR
(Attack, Decay, Sustain and Release) the common points of change (or breakpoints) in the envelope
of a note.

Aliasing

whenever a sound is replayed or synthesized whose frequency is over the Nyquist number (half the
current sampling rate), a second frequency will be heard "reflecting" off the Nyquist number
downwards at the same increment in Herz. Example: if the sampling rate is 44,100 Hz, the Nyquist
number would be 22,050. If one attempted to play a sound at 23,050 Hz, an additional tone at 21,050
Hz (the difference between the two frequencies subtracted from the Nyquist number) would be heard.

ALSA
Advanced Linux Sound Architecture - the default set of audio drivers for the Linux operating
system.

AM Synthesis
See Amplitude Modulation Synthesis.

Amplitude Modulation Synthesis
A type of sound synthesis where the gain of one signal is controlled, or modulated, by the gain of
another signal. The signal whose gain is being modulated is called the "carrier", and the signal
responsible for the modulation is called the "modulator". In classical Amplitude Modulation, or AM
Synthesis, both the modulator and the carrier are oscillators, however the carrier can also be another
kind of signal, such as an instrument or vocal input. Amplitude Modulation using a very low
frequency modulator is known as Tremolo, and the use of one audio signal to Amplitude Modulate
another audio signal is known as Ring Modulation.

Anything
A keyword in certain objects which matches an atom or series, sometimes written as "a" or "any".

Argument

A piece of information sent to an object which sets a parameter of that object. Arguments can be sent
as messages, or taken from creation arguments. Arguments are also used to replace variables (often
represented by dollar signs) in messages and objects. By using the [pack] object, multiple arguments
can be sent in a message.

Array

A way of graphically saving and manipulating numbers. It works in an X/Y format, meaning you can
ask the array for information by sending it a value representing a location on the X (horizontal) axis,
and it will return the value of that position value on the Y (vertical) axis. Arrays are often used to load
soundfiles in Pd, and are displayed on screen in graphs.

Glossary 247

ASIO
Audio Stream Input/Output - an audio driver for low latency audio input and output developed by the
Steinberg audio software company and available for many soundcards using the Windows operating
system.

Attack

The beginning of a note, which is usually triggered by pressing a key on a keyboard or by a
sequencer. A slow attack means the sound takes longer to reach full volume than a faster attack. See
also envelope.

Atom
A keyword meaning the most basic element of data.

Audio Driver
Provides a system of input and output between the soundcard and applications using the soundcard.
The more efficient the audio driver, the lower the latency of an audio system will be. Examples
include MME and ASIO for Windows, CoreAudio for Mac OS X and OSS, ALSA and JACK for
Linux.

Bandlimited
When the waveform used by an oscillator has been constructed with a limited number of harmonics
in order to reduce aliasing, then it is said to be bandlimited.

Bang
is special message in Pd, which many objects interpret as "do something now!", meaning do the
operation the object is supposed to do with the information it already has received in its inlets. Bang
can be sent via a GUI element, the [bang] object or a message box. [bang] can also be abbreviated to
just [b].

Bit Depth
Refers to the number of bits used to write a sample. Each sample of 16-bit audio, which is the CD
standard, is made from 16 bits which can either be 0 or 1. This gives 216 (or
2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2 = 65,536) number of possible values that sample can have. A
higher bit depth means a greater dynamic range. In contrast to 16 bit audio for CDs, studio
recordings are first made at 24 (or even 32) bit to preserve the most detail before transfer to CD, and
DVDs are made at 24 bit, while video games from the 1980s remain famous for their distinctively
rough "8 bit sound". Bit depth is also referred to as word length.

Buffer
a chunk of memory inside the computer used to store sound. The soundcard uses a buffer to store
audio from the audio applications for playback. If the latency of the system is too low for the
soundcard and audio drivers, then the buffer will be too small and the soundcard will use all the
audio data in the buffer before getting more from the audio application, resulting in an interruption
know as a "dropout", or glitch.

Canvas
An area of pixels in the patch which is used to add color or graphical layout to the patch. Since Pd
remembers when things were put in the patch, a canvas is placed in the patch before any other objects
which must be seen on top of it. Alternately, objects to be seen on top of the canvas can be Cut and
then Pasted over it.

Carrier
In Amplitude Modulation or Frequency Modulation synthesis, the carrier is the oscillator which is
affected by the Modulator.

Clipping
Clipping occurs when a signal is too loud for the soundcard to reproduce it. This happens when the
samples used to represent the sound go out of the range between -1 and 1 due to amplifying them.
Any samples out of this range will be truncated to fit within that range, resulting in distortion, a loss
of audio detail and in frequencies which were not present in the original sound. The clipping point of
a system is referred to as 0 dB in the gain scale, and the gain of any sound is measured in how far
below the clipping point it is (-10 dB, -24 dB, etc).

Cold and Hot

Glossary Terms 248

In Pd, the left-most inlet of an object is called "hot", which means that any input to that inlet causes
the object to do its function and create output at the outlet. Any other inlet to the right of the left-most
inlet is considered "cold", which means that input to these outlets is stored in the object until it
receives input on the hot inlet, at which time all the information stored in the object is acted on.

Comment
A line of text in a patch which explains some part of the patch, or is a reminder to the programmer or
anyone else who opens the patch later on. Comments have no actual affect on the function of the
patch.

Creation Argument
Additional information given when an object is created. Example: making an object called [osc~ 440]
would create a cosine oscillator (the name of the object) with a starting frequency of 440 Hz (the
creation argument). See also Argument.

Cutoff Frequency
The frequency at which a filter begins to affect a sound.

DAC
Digital to Analog Converter - the line out to the sound card from Pd. The Pd object for this is called
[dac~].

DC Offset
DC offset is caused when a waveform doesn't cross the zero line, or has unequal amounts of signal in
the positive and negative domains. This means that, in our model speaker, the membrane of the
speaker does not return to its resting point during each cycle. This can affect the dynamic range of
the sound. While DC offset can be useful for some kinds of synthesis, it is generally considered
undesirable in an audio signal.

Decay
The amount of time a sound takes to go from peak volume down to it's sustain level (in the case of an
envelope), or to no sound at all (in the case of a delay).

Decibel
Decibel is a scale used to measure the gain or loudness of a sound. Decibel is usually abbreviated to
dB and usually denotes how far under 0 dB (the clipping point of a system) a sound is (-10 dB, -24
dB, etc). The Decibel scale is logarithmic.

Delay
The amount of time between one event and another. As an audio effect, a delay takes an incoming
sound signal and delays it for a certain length of time. When mixed with the original sound, an "echo"
is heard. By using feedback to return the delayed signal back into the delay (usually after lowering its
gain), multiple echos with a decay result. The Pd objects to create a delay are named [delwrite~] and
[delread~], and the pair must be given the same creation argument in order to communicate (i.e.
[delwrite~ rastaman] and [delread~ rastaman]). As a setting in Pd, delay changes the latency of the
program to allow for faster response time at the expense of more gliltches or vice versa.

Distortion
Distortion occurs when an audio signal is changed in some way on the level of the samples which
produces frequencies not present in the original. Distortion can be deliberate or unwanted, and can be
produced by driving the signal to a clipping point, or by using mathematical transformations to alter
the shape (or "waveform") of the signal (usually referred to as "waveshaping").

Dollar Sign
A symbol in Pd which is used to represent a variable in either a message or a creation argument.
Multiple dollar signs can be used, as in "$1 $2 $3". In such a case, $1 will take the first argument in
an incoming message, $2 the second, $3 the third, etc etc. And in the message "set $1", any number
sent to this message would replace $1, resulting in "set 1", "set 2", "set 3" etc depending on what
number the message received. In the case of a creation argument used in an abstraction, one could
create an abstraction named [myniceabs], and call it in a patch as [myniceabs 34], [myniceabs 66]
and [myniceabs 88]. In this case, the initial frequency of an [osc~ $1] object in [myniceabs] would
be set to 34 Hzin the first abstraction, 66 Hz in the second and 88 Hz in the third, since the creation
argument of the [osc~] object sets its starting frequency. $0, however, is a special case, and is set to a
unique random number for each abstraction it is used in (but it retains the same value everywhere

Glossary Terms 249

inside that abstraction).
Dynamic Range

Used to refer to the difference between the loudest sound that can possibly recorded and the quietest,
as well as the amount of detail which can be heard in between. Sounds which are too quiet to be
recorded are said to be below the noise floor of the recording system (microphone, recorder, sound
card, audio software, etc). Sounds which are too loud will be clipped. In digital audio, the bit depth
used to record the sound determines the dynamic range, while in analog electronics, the self-noise of
the equipment also determines the dynamic range.

Edit Mode
The mode in Pd where objects, messages, comments, GUI elements and other parts of the Pd can be
placed on the screen and moved around. Edit mode can be switched in and out of by using the Edit
menu or the Control (or Apple) and "E" keys. The opposite of Edit mode is Play mode.

Envelope

A term used to describe changes to a sound over time. Traditionally, this is used to synthesize
different instrumental sounds with Attack, Decay, Sustain and Release (or ADSR) which are
triggered at the beginning of a note. A violin, for example, has a slow attack as the strings begin to
vibrate, while a piano has a fast (or "percussive") attack which seperates it's distinctive sound (or
"timbre") from that of other instruments.

External
An object in Pd which was not written into the core Pd program by the author, Miller S. Puckette.
Externals are created and maintained by the Pure Data development community, and account for
many of the additional fucntions of Pd, including the ability to manipulate video and 3D as well as
stream MP3s and many other things. Externals are usually loaded as an external library at the start of
a Pd session by including them in the startup flags, although some can be loaded as single objects at
anytime as long as the location where that external is saved on your system is listed in the path
setting of Pd.

External Library
A collection of externals written for Pd. Taken as a library, externals can be loaded at the start of a Pd
session by including them in the startup flags.

Filter
An audio effect which lowers the gain of frequencies above and/or below a certain point, called the
cutoff frequency. The range it allows through is called the pass band, and the frequencies which are
reduced are called the stop band. A High Pass filter [hip~] only allows frequencies above the cutoff
frequency through. A Low Pass filter [hip~] allows only frequencies lower than the cutoff frequency
through. A Band Pass filter [bp~] only allows frequencies close to the cutoff frequency through. The
amount by which the filter lowers the gain of frequencies in the stop band is measured in Decibels per
Octave, and is affected by the resonance (or "Q") of the filter, which determines the amount of
feedback the filter uses and which frequency is most emphasized by the filter.

Feedback
Feedback occurs in any system where the output is played back into the input. 100% feedback means
all of the output is returned to the input. A classic example is holding a microphone in front of a
speaker. Less than 100% feedback means that the signal is decreased in some way with each pass
through the system. In delays, the amount of feedback determines how many repetitions of the "echo"
one hears until the sound decays to zero. In a filter, feedback determines the resonance of the filter,
and how much emphasis in given to the filter's cutoff frequency.

Float or Floating Point
A number with a decimal point, which can be positive or negative and represent a range between
-8388608 and 8388608. A special notation is used for extremely large or small floating point
numbers, since Pd only uses up to 6 characters to represent a floating point number. Therefore,
"1e+006" is a floating point number which represents "1000000" (or 1 with 6 decimal places after it),
while "1e-006" represents "0.0000001" (or 1 with 6 decimal places in front of it).

FM Synthesis
See Frequency Modulation Synthesis

Glossary Terms 250

Foldover
Foldover occurs when a frequency higher than the Nyquist number is played or synthesized. See
Aliasing.

Frequency
Refers to number of times in one second a vibration (in many cases a sonic vibration) occurs.
Frequency is measured in Herz, and often indicates the pitch of a sound which is heard. Frequency is
a linear scale, however, while pitch is logarithmic. This means that a sound which is heard as one
octave above another one is twice the frequency in Hz, while two octaves above would be four times
the frequency and three octaves above would be eight times.

Frequency Modulation Synthesis
A type of sound synthesis where the frequency of one oscillator is controlled, or modulated, by the
gain of another oscillator. The signal whose gain is being modulated is called the "carrier", and the
signal responsible for the modulation is called the "modulator". In classical Amplitude Modulation, or
AM Synthesis, both the modulator and the carrier are oscillators, however the carrier can also be
another kind of signal, such as an instrument or vocal input. Very slow Amplitude Modulation is
known as Tremolo.

Gain
Expresses the strength of an audio signal, and is expressed in Decibels. The scale of gain is
logarithmic, since it expresses the physical ratio of power between one sound and another. Gain is
commonly measured in digital audio systems as the amount of Decibels below 0 dB, which is the
clipping point (-10 dB, -24 dB, etc). See also loudness.

Glitch
A sonic error occurring when the computer does not have enough time to process the audio coming in
or out of an audio application before sending it to the sound card. This is a result of having too low a
latency, so that the buffers of the sound card are not filled up as fast as the soundcard is playing
them, resulting in an temporary but audible loss of sound. Glitches can occur when other processes
interrupt the processor with various tasks (such as refreshing the display on the screen, reading or
writing a hard drive, etc etc).

Graph
A graph is a graphical container that can hold several arrays. An array needs a graph to be displayed,
so whenever you create an array from the menu, you will be asked whether you want to put it into a
newly created graph or into an existing graph.

Graph on Parent
A property of subpatches and abstractions where the GUI elements of the subpatch or abstraction
are visible in the main patch even when that subpatch or abstraction is not open. This allows for
better graphic design and usability for complicated patches.

GUI element
Graphical User Interface - visible parts of the Pd patch which are used to control it via the mouse or
to display information, such as sliders, radio buttons, bangs, toggles, number boxes, VU meters,
canvases, graphs, arrays, symbols, etc.

Harmonics

HID
see Human Interface Device

Hot and Cold
In Pd, the left-most inlet of an object is called "hot", which means that any input to that inlet causes
the object to do its function and create output at the outlet. Any other inlet to the right of the left-most
inlet is considered "cold", which means that input to these outlets is stored in the object until it
receives input on the hot inlet, at which time all the information stored in the object is acted on.

Hradio
A horizontal radio button. See also GUI element.

Hslider

Glossary Terms 251

A horizontal slider. See also GUI element.
Hertz or Hz

A term used to describe the number of times something occurs in one second. In digital audio, it is
used to describe the sampling rate, and in acoustics it is used to describe the frequency of a sound.
Thousands of Herz are described as KHz.

Human Interface Device
A Human Interface Device (aka HID) is any device that is meant to allow humans to interact with a
computer. Usually, HIDs are mice, keyboards, joysticks, tablets, gamepads, etc. There a number of
unusual HIDs, like the Griffin PowerMate on the low end, or the SensAble PHANTOM 6DOF on the
high end.

Index number
Index numbers are used to look up values stored in Arrays. If we ask an array what is stored at index
number "0", it will return the first value stored there. And if the array has 100 values stored in it,
asking it for index number "99" will give the last value stored.

Inlet
The small rectangular boxes at the top of objects, GUI elements, messages, subpatches and
abstractions. They receive input from the outlets of the objects, messages, GUI elements, subpatches
or abstractions above them. Inlets can be hot or cold.

Integer
In Pd, this is a whole number, without a decimal point, which can be positive or negative. See also
floating point.

JACK
JACK Audio Connection Kit - a low latency audio system designed to run on Linux and Mac OSX in
combination with various audio drivers such as ALSA and Portaudio. On Linux, the QJackctl
application can be used to make audio and MIDI connections between the soundcard, MIDI devices
such as keyboards and Pd. On Mac OSX, JACK is referred to as JackOSX, and the JackPilot
application functions like QJackCtl, but only for audio connections.

Latency
The amount of time needed to process all the samples coming from sound applications on your
computer and send it to the soundcard for playback, or to gather samples from the sound card for
recording or processing. A shorter latency means you will hear the results quicker, giving the
impression of a more responsive system which musicians tend to appreciate when playing. However,
with a shorter latency you run a greater risk of glitches in the audio. This is because the computer
might not have enough time to process the sound before sending it to the soundcard. A longer latency
means less glitches, but at the cost of a slower response time. Latency is measured in milliseconds.

Linear
A scale of numbers which progresses in an additive fashion, such as by adding one (1, 2, 3, 4...), two
(2, 4, 6, 8...) or ten (10, 20, 30, 40...). Another type of scale used in Pd is logarithmic. Multiplying an
audio signal, for example, by either a linear or a logarithmic scale will produce very different results.
The scale of frequency is linear, while the scales of pitch and gain are logarithmic.

List
A special type of message that is a collection of data. Specifically, a "list" is a series of 3 or more
atoms whose first atom is the selector "list", or, a series of 2 or more atoms whose first atom is
numeric, which causes the "list" selector to be implied, i.e. [list one two(, [1 2(, [1 two(.

Logarithmic
A scale of numbers which progresses according to a certain ratio, such as exponentially (2, 4, 8, 16,
256...). Another type of scale used in Pd is linear. Multiplying an audio signal, for example, by either
a linear or a logarithmic scale will produce very different results. Both scales of pitch and gain are
logarithmic, while the scale of frequency is linear.

Loudness
Unlike gain, which expresses the physical power of a sound, loudness is the perceived strength of a
sound. Higher frequencies are perceived as louder than mid-range or lower frequencies with the same
amount of gain, and the amount of perceived difference varies from person to person.

Message

Glossary Terms 252

A piece of information sent to the objects of a patch, often using the message GUI element.
Messages tell objects which functions to perform and how, and can be simply numeric, include text
which describes which function to change or even contain other information such as the location of
soundfiles on the computer.

MIDI

A system of describing musical information in electronic music using numbers between 0 and 127.
There are various types of MIDI messages which can be sent in and out of Pd such as note ([notein],
[noteout]), pitchbend ([pitchin], [pitchout]), continuous controller ([ctlin], [ctlout]) and program
change ([pgmin], [pgmout]). MIDI messages can be sent to and from external MIDI devices, such as
keyboards, slider boxes or hardware sequencers, or they can be exchanged with other MIDI
applications inside the computer.

MME

The default set of audio drivers for the Windows operating system. MME drivers do not have as low
latency as ASIO drivers.

Modulator
In Amplitude Modulation or Frequency Modulation synthesis, the modulator is the oscillator
which affects the Carrier.

Monophonic
A monophonic electronic music instrument has one voice, meaning that only one note can be played
at a time. See also polyphonic.

Noise Floor
The part of the dynamic range which represents the quietest sound which can be recorded or played
back. Sounds below this level (expressed in Decibels) will not be heard over the background noise of
the system. In digital audio, the bit depth used to record the sound determines the noise floor, while
in analog electronics, the self-noise of the equipment also determines the noise floor. Typical
computer soundcards can have an analog noise floor between approximately -48 dB and -98 dB.

Normalize
To normalize an audio signal means to adjust its gain to peak at the maximum the sound card allows
before clipping (i.e. -1 and 1). This is done to maximize the dynamic range of the signal when it is
played back.

Note
In electronic and computer music, a note is represented on the MIDI scale by two numbers between 0
and 127 (the amount of keys available on the MIDI keyboard). A note is triggered either by pressing a
key on the keyboard or by a sequencer. A MIDI note has two values: it's pitch (the musical note it
plays, expressed as a frequency which has been assigned to that note) and it's velocity (how hard the
key is pressed, which determines how loud the note is heard). Notes also have an envelope, which
determines the change in volume that note has over time.

Number
A GUI element used to display and store numbers. The number2 GUI element can also save numbers
when that function is set in its properties.

Nyquist Frequency
A number which is half the sampling rate of the application which is being used, and represents the
highest possible frequency which can be played back without aliasing. The Nyquist number is
expressed in Herz. Example: if the sampling rate is 44,100 Hz, the Nyquist number would be 22,050.
If one attempted to play a sound at 23,050 Hz, an aliased additional sound at 21,050 Hz (the
difference between the two frequencies subtracted from the Nyquist number) would be heard.

Object
The most basic building block of a Pd patch. Objects have a names, which could be considered the
"vocabulary" of the Pd language, and the name of the object determines its function. Objects can take
creation arguments to modify their functions at the time they are created. They receive information
via inlets and send output via outlets. Objects with a tilde (~) in their name are audio generating or
processing objects, otherwise they are objects to manipulate data (for example, an object named [+]

Glossary Terms 253

would add two numbers together, and an object named [+~] would add two audio signals together).
To see the documentation help file of any object, right click with the mouse, or use the Control (or
Apple) key with a mouseclick.

Octave
The interval between one musical note and another with 12 semitones (or 12 notes in the MIDI scale)
between them, which is seen in acoustics as half or double the frequency. While frequency is a linear
scale, however, while pitch is logarithmic. This means that a sound which is heard as one octave
above another one is twice the frequency in Hz, while two octaves above would be four times the
frequency, three octaves above would be eight times higher, and one octave below would be half the
frequency.

Oscillator
An audio generator which produces a continuous, repeating waveform. A cosine oscillator [osc~]
produces a pure sinus wave with no harmonics, while a sawtooth or ramp oscillator [phasor~]
produces a richer sound with many harmonics. Other shapes for a waveform include square, pulse or
triangle. Each waveform is defined by a mathematical function, and each shape has its own harmonic
spectrum.

OpenGL
(Open Graphics Library) is a widely used, industry standard library of 2D and 3D graphics functions.

OSS
An outdated system of audio drivers for the Linux operating system, replaced by ALSA.

Outlet
The small rectangular boxes at the bottom of objects, GUI elements, messages, subpatches and
abstractions. They send output to the inlets of the objects, subpatches, abstractions, messages and
GUI elements below them.

Oversampling
The process of increasing the sampling rate of digital audio, most often in order to remove aliasing
noise with a filter.

Pass Band
The range of frequencies allowed through by a filter.

Patch
The document in which you build structures within Pd. One patch can contain many objects,
comments, GUI elements, messages, subpatches and abstractions. If another patch is saved in the
same working directory or in another directory listed in the path setting, then it can be used in the
main or parent patch as an abstraction. Patches are saved as simple text files with the names and
locations of all the contents listed inside. Patches are always saved with the .pd extension.

Path
Is a setting of Pd which determines two things. The first is the directories on your computer which Pd
searches to load externals, and the second is the directories where Pd searches to find abstractions
used in patches. Path can be set with startup flags, or by entering the directories in the startup
settings using the main window of Pd.

Pitch
A part of a note in the MIDI specification which determines what pitch is heard when the note is
played. It is represented by a number between 0 and 127, with each number representing a key on the
MIDI keyboard. The relation of pitch to frequency is logarithmic. This means that a sound which is
heard as one octave (+ 12 MIDI notes) above another one is twice the frequency in Hz, while two
octaves (+ 24 MIDI notes) above would be four times the frequency, three octaves (+ 36 MIDI notes)
above would be eight times, and one octave below (- 12 MIDI notes) would be half the frequency.

Play Mode
The mode in Pd where the GUI elements and other parts of the Pd can be manipulated with the

Glossary Terms 254

mouse. This is often when the patch is being played. Play mode can be switched in and out of by
using the Edit menu or the Control (or Apple) and "E" keys. The opposite of Play mode is Edit mode.

Pointer
A reference to a position in a scalar used to manipulate and read data from it.

Polyphonic
A polyphonic electronic music instrument is capable of playing multiple notes at a time, allowing for
chords and other musical techniques. The number of notes it can play is determined by the number of
voices it has. See also monophonic.

Portaudio
A Free and Open Source set of audio drivers for Linux and Mac OS X.

Property
All the GUI elements in Pd have a menu where their properties can be changed. This is accessed by
using the right-click mouse button, or the Control (or Apple) key and a mouseclick. Under properties,
the graphical appearance and function of the GUI element can be changed.

Radio
A GUI element set of buttons which, when clicked, send the number of the box which was clicked to
the outlet, or display numbers received by its inlet. Radio boxes can be vertical or horizontal, and the
number of boxes seen can be changed in the properties.

Real-time
A system where changes can be made in the program even as it is running, and the user can see or
hear the results immediately. The opposite would be a non-real-time system, where data must be
compiled or rendered by the computer in order to hear or see results.

Release
The amount of time it takes for the gain of a note to reach zero after the key on the keyboard has been
released. See also envelope.

Resonance
The frequency in a filter or other system of feedback which is most emphasized, resulting in that
frequency being the loudest.

Ring Modulation
The use of one audio signal to Amplitude Modulate another audio signal.

Sample
In digital audio, a sample is the smallest possible element of a recorded sound. In CD audio, for
example, it takes 44,100 samples to make one second of recorded sound, and so we can say that the
sampling rate is 44,100 Herz. Samples also have a bit depth which determines the dynamic range
that is possible to record and playback. Common bit depths are 8 (for old video games), 16 (for CD
audio), 24 (for studio recording and DVDs) or 32 (for sounds inside the computer). In electronic
music, a sample is also a prerecorded piece of sound which is played back by a sampler.

Sampler
An electronic music instrument which plays back a recorded sound (or sample) whenever it is sent a
note. The pitch of the note determines how fast or slow the sample is played back, which emulates
the pitch changes in other instruments. Samples can be looped (played over and over) and one-shot
(played once).

Sampling Rate
The rate at which the computer records and plays back sound, which is measured in Herz
representing the number of samples per second. CD audio is recorded and played at 44,100 Hz (or
44.1 KHz), while DVD audio runs at 96,000 Hz (or 96 KHz) and cheap consumer gadgets like voice
recorders, video games, mobile phones, toys and some MP3 players often use a rate of 22,050 Hz
(22.05 KHz) or even less. The sampling rate determines the highest frequency which can be recorded
or played, which is expressed by the Nyquist number, or half the sampling rate. Sounds higher in
frequency than the Nyquist rate will be aliased. Playing back sounds at a different sampling rate then
they were recorded at will result in hearing that sound at the "wrong speed".

Scalar
A graphical instance of a struct in Pd's graphical data structures.

Sequencer

Glossary Terms 255

A MIDI device or application used to store notes which are sent to a synthesizer or sampler.
Sequencers often play notes back at a rate specified in Beats per Minute.

Selector
A symbolic atom that serves as an instruction to the receiving object as how to handle the message.

Self-noise
The amount of analog noise a piece of electronic equipment produces without any further input, often
due to parts of its circuitry or electromagnetic interference. Self-noise is measured in Decibels. The
self noise of the equipment determines the noise floor. Professional or semiprofessional sound
equipment often produces less self-noise than cheaper, consumer-grade equipment. Typical computer
soundcards have self-noise which results in a noise floor between approximately -48 dB and -98 dB.

Send and Receive
A method of communicating between objects in a patch without the connecting cables. The objects
[send] and [receive] are used, with a shared creation argument which sets the "channel" they
transmit on, for example [send volume] and [receive volume]. The names of the objects can be
abbreviated to [s] and [r], and a pair for audio signals also exists ([send~] and [receive~], or [s~] and
[r~]).

Shell
The text-only interface to your computer, where commands are typed in order to start programs and
get information. On Linux and Mac OSX, this is often called the "terminal". On Windows, it is
referred to as the Command Prompt or as the DOS Prompt (now obsolete).

Slider
A GUI element which sends a number to its outlet when it is moved with the mouse, or display
numbers received by its inlet. Sliders can be horizontal or vertical, and when they are created have a
typical MIDI range of 0 to 127. This range can be changed under the properties.

Startup Flag
When starting Pd from the shell, the startup flags are used to pass information to Pd about how it
should run, what audio drivers it should use, how many channels, what patch to open at startup,
which external libraries to load and what paths to use to find externals and abstractions.

Stop Band
The frequencies which are reduced by a filter.

Struct
An object to create templates for data structures.

Subpatch
A graphical enclosure in a patch used to conceal parts of the patch which are not always used.
Subpatches can be opened by clicking on them, and the GUI elements inside can be displayed even
when closed by setting their properties to Graph on Parent. Inlets and outlets can be used to send
and receive information to and from a subpatch, as well as send and receive pairs.

Sustain
The level of gain a note holds after the attack and decay. The note holds this gain level until the key
is released. See also envelope.

Symbol
Any part of a message which is not a number. Single words or locations of data on the computer are
common symbols, and there are a variety of externals which can be used to construct more
complicated symbols.

Synthesizer
A sound producing device or application which receives notes and plays sound based on these notes.

Table
Like a graph, a table is a way of using an array in a Pd patch. In this case, it is used like an
abstraction, with a creation argument which gives the name of the array. For example, if you create
an object named [table mytablename], then inside the [table] object you will find an array named
"mytablename" inside its own graph.

Toggle
A GUI element which sends either a zero or a non-zero number (typically 1) to its outlet when
clicked, or displays zero or a non-zero number received by its inlet. Its function can be changed

Glossary Terms 256

under its properties.
Tremolo

A form of Amplitude Modulation where the gain of an audio signal is changed at a very slow, often
at a frequency below the range of hearing (approximately 20 Hz). This effect is commonly used to
alter the sound of organs or electric guitars.

Truncate
When a number goes out of a certain set of allowed boundaries, it will be truncated. This means that
any numbers out of that range will be replaced by the closest number still within that range (either the
highest or lowest). In a digital audio signal, this is called clipping.

Variable
A type of "placeholder", often within a message and written as a dollar sign, which is meant to be
replaced with other information. For example, in the message "$1 $2 $3", there are three variables to
be replaced with actual information.

Vector Based Graphics
The graphical system used by Pd to display patches where every element on the screen is defined by
a set of numbers describing their appearance rather than an image, and every change to these elements
means that the computer must recalculate that part of the screen.

Velocity
A part of a note in the MIDI specification which says how hard the key of the keyboard was pressed,
and in turn determines the gain of that note when it is played. It is represented by a number between 0
and 127.

Voices
A polyphonic electronic music instrument can play as many simultaneous notes as it has voices. A
monophonic instrument, on the other had, can only play one note at a time and is said to have one
voice.

Vradio
A vertical radio button. See also GUI element.

Vslider
A vertical slider. See also GUI element.

VU
A GUI element in Pd which is used to display the gain of an audio signal in Decibels.

Word Length
See bit depth.

Working Directory
In Pd this is the directory which the patch you are working in has been saved to. Any abstractions
used in that patch must either be saved to that directory, or the directory in which those abstractions
have been saved must be added to the path setting in the startup preferences.

Glossary Terms 257

Pd Links

Pure Data Software

PureData.info: http://www.puredata.info/

Pd Downloads: http://www.puredata.info/downloads

Pure Data CVS: http://www.puredata.info/dev/cvs

Pd Extended Installers: http://at.or.at/hans/pd/installers.html

Miller S. Puckette's Pd page: http://www-crca.ucsd.edu/~msp/software.html

Externals

Pd Downloads: http://www.puredata.info/downloads

Pure Data CVS: http://www.puredata.info/dev/cvs

GEM: http://gem.iem.at/

PdP: http://zwizwa.fartit.com/zwikizwaki.php?page=PureDataPacket

PiDiP: http://ydegoyon.free.fr/pidip.html

Unauthorized Pd: http://ydegoyon.free.fr/software.html

PMPd: http://drpichon.free.fr/pmpd/

Linux Distributions with Pd

Dyne:bolic: http://www.dynebolic.org/

Pure Dyne: http://puredyne.goto10.org/

Ubuntu Studio: http://ubuntustudio.org/

PlanetCCRMA: http://ccrma.stanford.edu/planetccrma/software/

Pd Gentoo Overlay: http://pd-overlay.sourceforge.net/

Tutorials & Examples

Pd community patches: http://www.puredata.org/community/patches

Pure Data Documentation Project: http://www.davesabine.com/eMedia/PureData/tabid/145/Default.aspx

Theory and Techniques of Electronic Music by Miller Puckette:

 Pd Links 258

http://www.puredata.info/
http://www.puredata.info/downloads
http://www.puredata.info/dev/cvs
http://at.or.at/hans/pd/installers.html
http://www-crca.ucsd.edu/~msp/software.html
http://www.puredata.info/downloads
http://www.puredata.info/dev/cvs
http://gem.iem.at/
http://zwizwa.fartit.com/zwikizwaki.php?page=PureDataPacket
http://ydegoyon.free.fr/pidip.html
http://ydegoyon.free.fr/software.html
http://drpichon.free.fr/pmpd/
http://www.dynebolic.org/
http://puredyne.goto10.org/
http://ubuntustudio.org/
http://ccrma.stanford.edu/planetccrma/software/
http://pd-overlay.sourceforge.net/
http://www.puredata.org/community/patches
http://www.davesabine.com/eMedia/PureData/tabid/145/Default.aspx

http://www.crca.ucsd.edu/~msp/techniques.htm

Music making tutorials: http://www.obiwannabe.co.uk/html/music/musictuts.html

Practical synthetic sound design in Pd:
http://www.obiwannabe.co.uk/html/sound-design/sound-design-all.html

Pd Repertory Project: http://crca.ucsd.edu/~msp/pdrp/latest/doc/

Getting Help

Pure Data Mailing List (Search): http://lists.puredata.info/pipermail/pd-list/

Pure Data Mailing List (Subscribe): http://lists.puredata.info/listinfo/pd-list

Pure Data Forum: http://puredata.hurleur.com/

Tutorials & Examples 259

http://www.crca.ucsd.edu/~msp/techniques.htm
http://www.obiwannabe.co.uk/html/music/musictuts.html
http://www.obiwannabe.co.uk/html/sound-design/sound-design-all.html
http://crca.ucsd.edu/~msp/pdrp/latest/doc/
http://lists.puredata.info/pipermail/pd-list/
http://lists.puredata.info/listinfo/pd-list
http://puredata.hurleur.com/

License
All chapters copyright of the authors (see below). Unless otherwise stated all chapters in this manual licensed
with GNU General Public License version 2

This documentation is free documentation; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

License 260

Authors
ABSTRACTIONS
© Luka Princic 2008
Modifications:
adam hyde 2009

ADDITIVE SYNTHESIS
© Derek Holzer 2008
Modifications:
adam hyde 2009
Daniel Shiffman 2009

ADVANCED CONFIGURATION
© adam hyde 2009

AMPLIFIER
© Derek Holzer 2008
Modifications:
adam hyde 2009

AMPLITUDE MODULATION
© Derek Holzer 2008, 2009
Modifications:
adam hyde 2009
Daniel Shiffman 2009

ANTIALIASING
© Derek Holzer 2009
Modifications:
adam hyde 2009
Alexandre Porres 2009

ARRAYS, GRAPHS, TABLES
© Luka Princic 2008
Modifications:
Derek Holzer 2009

AudioDelayObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

AudioFiltersObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

AudioGlueObjects
© Joao Pais 2009

 Authors 261

Modifications:
adam hyde 2009
Derek Holzer 2009

AudioMathObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

AUDIO STREAMING
© adam hyde 2005, 2006, 2007, 2008, 2009
Modifications:
corey fogel 2007
Derek Holzer 2008
Felipe Ribeiro 2007
Heiko Recktenwald 2006

CONFIGURING
© Derek Holzer 2006, 2008
Modifications:
adam hyde 2007, 2008, 2009
Georg ... 2008

CONTROLLING THE SYNTH
© Derek Holzer 2008, 2009
Modifications:
adam hyde 2009

CREDITS
© adam hyde 2006, 2007, 2008, 2009
Modifications:
Derek Holzer 2006, 2008, 2009

DC OFFSET
© Derek Holzer 2009
Modifications:
adam hyde 2009
Alexandre Porres 2009

DATAFLOW
© Derek Holzer 2008
Modifications:
adam hyde 2009

DataTemplates
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

DOLLAR SIGNS
© Luka Princic 2008

 Authors 262

ENVELOPE GENERATOR
© Derek Holzer 2008
Modifications:
adam hyde 2009

FILTERS
© Derek Holzer 2008
Modifications:
adam hyde 2009

4 STAGE SEQUENCER
© Derek Holzer 2008, 2009
Modifications:
adam hyde 2009

FREQUENCY
© Derek Holzer 2008
Modifications:
adam hyde 2009
Daniel Shiffman 2009
Laura Garcia-Barrio 2009

FREQUENCY MODULATION
© Derek Holzer 2008, 2009
Modifications:
adam hyde 2009

GEMBasics
© marius schebella 2009
Modifications:
adam hyde 2009
Evan Raskob 2009
Hans-Christoph Steiner 2009

GEMColorKeying
© max neupert 2009

GEMCamera
© marius schebella 2009
Modifications:
adam hyde 2009

GEMFrameBuffer
© marius schebella 2009
Modifications:
adam hyde 2009

GEMGLSLShaders
© marius schebella 2009
Modifications:
adam hyde 2009
Jeremy Schaller 2009

 Authors 263

GEMImagesMoviesAndVideo
© marius schebella 2009
Modifications:
adam hyde 2009

GEMInteraction
© marius schebella 2009
Modifications:
adam hyde 2009

GEMIntroduction
© marius schebella 2009
Modifications:
adam hyde 2009
Evan Raskob 2009
Hans-Christoph Steiner 2009
olsen wolf 2009

GEMLightingFogAmbientColor
© marius schebella 2009
Modifications:
adam hyde 2009

GEMObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

GEMParticleSystems
© marius schebella 2009
Modifications:
adam hyde 2009

GEMPixEffects
© marius schebella 2009
Modifications:
adam hyde 2009
Jeremy Schaller 2009
vincent RIOUX 2009

GEMSavingAndRecording
© marius schebella 2009
Modifications:
adam hyde 2009
vincent RIOUX 2009

GEMScreens
© marius schebella 2009
Modifications:
adam hyde 2009
servando barreiro 2009

 Authors 264

GEMText
© marius schebella 2009
Modifications:
adam hyde 2009

GEMVideoMixer
© marius schebella 2009
Modifications:
adam hyde 2009
servando barreiro 2009

GEMVideoTracking
© marius schebella 2009
Modifications:
adam hyde 2009
Hans-Christoph Steiner 2009
max neupert 2009

GEM3DAnimation
© marius schebella 2009
Modifications:
adam hyde 2009

GEM3DShapes
© marius schebella 2009
Modifications:
adam hyde 2009

GameControllers
© adam hyde 2009
Modifications:
Hans-Christoph Steiner 2009
Koray Tahiroglu 2009
servando barreiro 2009

GENERATING WAVEFORMS
© Derek Holzer 2009
Modifications:
Roman Haefeli 2009

GRAPH ON PARENT
© Luka Princic 2008
Modifications:
adam hyde 2009

DEBIAN
© adam hyde 2008
Modifications:
Derek Holzer 2008

OSX
© Derek Holzer 2006, 2008

 Authors 265

Modifications:
adam hyde 2008
Daniel Prieto 2007
Hans-Christoph Steiner 2009
Maarten Brinkerink 2007

UBUNTU
© adam hyde 2008
Modifications:
Derek Holzer 2008

WINDOWS
© adam hyde 2006, 2008
Modifications:
Derek Holzer 2008
Hans-Christoph Steiner 2009

INTRODUCTION
© adam hyde 2006, 2008, 2009
Modifications:
Derek Holzer 2006, 2007, 2008
Evelina Domnitch 2007
Patrick Davison 2009

Glue Objects
© Derek Holzer 2006, 2008
Modifications:
adam hyde 2009
Joao Pais 2009

LISTS
© Hans-Christoph Steiner 2009
Modifications:
adam hyde 2009

MATH
© Derek Holzer 2008
Modifications:
adam hyde 2008, 2009
Joao Pais 2009

Math Objects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

MESSAGES
© Derek Holzer 2008
Modifications:
adam hyde 2008, 2009
Joao Pais 2009

 Authors 266

MidiObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

MiscObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

OSC
© Patrick Davison 2009
Modifications:
adam hyde 2009
vincent RIOUX 2009

Introduction
© Joao Pais 2009
Modifications:
adam hyde 2009

ObsoleteObjects
© Joao Pais 2009
Modifications:
Derek Holzer 2009
Hans-Christoph Steiner 2009

OGGCAST
© adam hyde 2006, 2009
Modifications:
alejo duque 2009
Derek Holzer 2008

ORDER OF OPERATIONS
© Luka Princic 2008
Modifications:
adam hyde 2008, 2009

OSCILLATORS
© Derek Holzer 2008
Modifications:
adam hyde 2009
Daniel Shiffman 2009
Laura Garcia-Barrio 2009

OscillatorsAndTables
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

 Authors 267

PDPObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

Pduino
© Koray Tahiroglu 2009
Modifications:
Derek Holzer 2009

PhysicalModellingObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

GLOSSARY
© Derek Holzer 2006, 2008, 2009
Modifications:
adam hyde 2008, 2009
Evan Raskob 2009
Hans-Christoph Steiner 2009
Laura Garcia-Barrio 2009
michela pelusio 2007

LINKS
© Derek Holzer 2006, 2007, 2008
Modifications:
adam hyde 2009

SEND AND RECEIVE
© adam hyde 2009
Modifications:
Hans-Christoph Steiner 2009
Scott Fitzgerald 2009

SIMPLE SYNTH
© Derek Holzer 2008, 2009
Modifications:
adam hyde 2009
Laura Garcia-Barrio 2009

SQUARE WAVES
© Derek Holzer 2008, 2009
Modifications:
adam hyde 2009

STARTING
© Derek Holzer 2006, 2008
Modifications:
adam hyde 2008, 2009
corey fogel 2007

 Authors 268

Daniel Prieto 2007

STEP SEQUENCER
© Derek Holzer 2008, 2009
Modifications:
adam hyde 2009

SUBPATCHES
© Luka Princic 2008
Modifications:
adam hyde 2009

SubwindowsObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

TablesObjects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

THE INTERFACE
© Derek Holzer 2006, 2007, 2008
Modifications:
adam hyde 2008, 2009
Daniel Prieto 2007

Time Objects
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

TROUBLE SHOOTING
© Derek Holzer 2006, 2008
Modifications:
adam hyde 2008, 2009
simone marin 2008

UsingMidi
© servando barreiro 2009
Modifications:
adam hyde 2009

WHAT IS DIGITAL AUDIO?
© Derek Holzer 2006, 2008, 2009
Modifications:
adam hyde 2008, 2009

 Authors 269

GRAPHICAL PROGRAMMING
© Derek Holzer 2006, 2008, 2009
Modifications:
adam hyde 2008, 2009
First Last 2009
Maarten Brinkerink 2007

WIRELESS CONNECTIONS
© Luka Princic 2008
Modifications:
adam hyde 2009

Free manuals for free software

 Authors 270

http://www.flossmanuals.net/

General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Lesser General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without

 General Public License 271

limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if
its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

 General Public License 272

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

 General Public License 273

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 General Public License 274

END OF TERMS AND CONDITIONS

 General Public License 275

	Table of Contents
	 Pure Data
	 Real Time Graphical Programming
	Graphical Programming
	 Real Time

	What is digital audio?
	Frequency and Gain
	Sampling Rate and Bit Depth
	Speed and Pitch Control
	Volume Control, Mixing and Clipping
	The Nyquist Number and Foldover/Aliasing
	DC Offset
	Block Size
	It's All Just Numbers

	Installing on OS X
	Installing X11 on Mac OS X 10.3 Panther and 10.4 Tiger

	Installing on Windows
	 Installing on Ubuntu
	 Installing libflac7 and libjasper
	 Installing Pure Data

	Installing on Debian
	 Configuring Pure Data
	Basic configuration
	 Audio drivers
	 MIDI drivers (Linux only)
	Audio Settings
	Sample rate
	 Delay (msec)
	 Input Device
	 Output Device

	 MIDI Settings
	 Test Audio and MIDI

	Advanced configuration
	 Startup Flags
	Path
	Platform-Specific Configuration Tools
	Linux
	OS X
	Windows

	 Starting Pure Data
	 Starting via an icon
	 Starting via command line
	 Linux (from xterm)
	 Mac OSX (from Terminal.app)
	Windows (from the DOS shell or Command Prompt)

	Starting from a script
	Windows
	Linux and OS X

	Advanced scripting for starting Pd

	 The Interface
	Starting a new Patch
	Interface differences in Pure Data
	Linux
	Mac OS X

	Placing, connecting and moving Objects in the Patch
	Edit Mode and Play Mode
	Messages, Symbols and Comments
	GUI Objects
	GUI Object Properties

	Arrays and graphs
	Graph

	A Note on using GUI Objects

	 Troubleshooting
	Building a Simple Synthesizer
	Downloads

	Oscillators
	Sine Wave Oscillator
	Sawtooth Wave Oscillator
	Square Wave Oscillator
	Other Waveforms

	Frequency
	Audio vs Message Cables
	MIDI and Frequency

	Additive Synthesis
	Amplitude Modulation
	Simple AM Synthesis
	Tremolo
	Ring Modulation

	Frequency Modulation
	Square Waves and Logic
	Pulse Width Modulation
	Math & Logic Operations

	Generating Waveforms
	Outline
	Introduction
	Using Sinesum
	Sawtooth Wave
	Playback of the Graphed Waveforms
	Triangle Wave
	Square Wave

	Normalizing & DC Offset
	Antialiasing
	Outline
	Introduction: What is Aliasing?
	The Problem: an Aliasing Oscillator
	Oversampling and Filtering
	Bandlimited Waveforms

	Filters
	Low Pass Filter
	High Pass Filter
	Band Pass Filter
	Voltage Controlled Filter

	The Envelope Generator
	Simple Envelope Generator Using [line]
	Complex Envelope Generator Using [vline~]
	Envelopes Stored In Arrays

	The Amplifier
	 Using a Slider
	Using [line~], [vline~] and [tabread4~]

	Controlling the Synthesizer
	Input from the Computer Keyboard
	Input from a MIDI Keyboard

	Building a 16-Step Sequencer
	A Counter
	Hot and Cold
	Storing and Retrieving MIDI Note Values
	The Finished 16-Step Sequencer Patch

	A Four Stage Filtered Additive Synthesizer
	The Input Stage
	The Oscillator Stage
	The Filter Stage
	The Amp Stage
	Subpatches

	Dataflow Tutorials
	Messages
	Message Boxes
	 Packing elements and variables
	Deconstructing messages: unpack and route

	Math
	Simple arithmetic
	Higher math
	Trigonometry
	Fraction work
	Numbers and ranges
	Random numbers
	Relational operators
	Conversion between acoustical units
	Bit twiddling
	Expr
	Audio math

	Lists
	Order of Operations
	Hot and Cold Inlets
	Order of Connecting
	Trigger

	Depth first message passing

	Wireless Connections
	What kind of data can be sent?
	Throw and Catch

	Subpatches
	Subpatch Inlets and Outlets
	Closing and Reusing Subpatches

	Abstractions
	Saving Abstractions
	Calling and Editing Abstractions

	Dollarsigns
	Graph on Parent
	Arrays, Graphs and Tables
	Creating an Array
	Using Arrays to Display Audio
	Writing Data to an Array
	Reading Data from Arrays
	Using Arrays to Play Back Samples

	GEM
	What GEM Is For
	GEM & OpenGL
	The Very Basics of Rendering
	[gemwin]
	gemhead
	Let's get started
	
	pix_objects and and 3D Shapes

	Images, Movies and Live Video
	[pix_image]
	[pix_film]
	[pix_movie]
	[pix_video]
	Related Objects

	GEM mini-video mixer..
	
	2- Adding webcam / live video input:
	3-chroma key
	[pix_gain]
	
	[pix_threshold]
	Recording movies with pix_record
	Animations of still images

	 GEM window properties:
	1- fullscreen
	2-Extended desktop,
	[pix_movement]
	[pix_background]
	[pix_blob]
	Getting the coordinates

	Game Controllers
	Start with the Keyboard
	Mouse Cursor
	USB HID
	What do "abs", "rel", and "key" mean?

	Make Your Own HID
	 HID to Pd
	Pduino:

	Open Sound Control (OSC)
	OSC in Pd
	Connecting two computers
	MIDI to OSC

	[netsend] and [netreceive]
	[netsend]
	[netreceive]
	Connecting with other applications

	Midi
	Setup
	Channels and Ports
	Multiple Devices

	3-Midi hardware:
	4- Making notes in pd, Sending / reciving notes.
	5- Midi controllers
	 6- Sending midi to other softwares, sending CC (control change).
	 7- Another midi objects:
	 Streaming Audio
	 1. Create the mp3cast object
	 2. Connect an osc~ object
	 3. Settings
	 4. Start the Stream
	 5. Streaming from The Mic
	6. Disconnect

	 oggcast~
	 Parameters
	Streaming from your Sound Card
	Streaming from Pure Data audio
	Tips

	Object List
	Dataflow
	Audio
	Patch Management
	External libraries

	Vanilla and Extended Objects
	Organisation
	Name
	Library/Path
	Function

	GLUE
	Name
	Library/Path
	Function

	Math
	Name
	Library/Path
	Function

	Time
	Name
	Library/Path
	Function

	Midi
	Name
	Library/Path
	Function

	Tables
	Name
	Library/Path
	Function

	Misc
	Name
	Library/Path
	Function

	Audio Glue
	Name
	Library/Path
	Function

	Audio Math
	Name
	Library/Path
	Function

	Audio Oscillators and Tables
	Name
	Library/Path
	Function

	Audio Filters
	Name
	Library/Path
	Function

	Audio Delay
	Name
	Library/Path
	Function

	Subwindows
	Name
	Library/Path
	Function

	Data Templates and Acessing Data
	Name
	Library/Path
	Function

	GEM
	Name
	Library/Path
	Function

	PDP
	Name
	Library/Path
	Function

	Physical Modelling
	Name
	Library/Path
	Function

	Obsolete
	Glossary
	Glossary Terms

	 Pd Links
	Pure Data Software
	Externals
	Linux Distributions with Pd
	Tutorials & Examples
	Getting Help

	License
	 Authors
	 General Public License

