
 The Public Csound Reference Manual 1 Supplement - Tutorials

AN INSTRUMENT DESIGN TOOTORIAL
by Dr. Richard Boulanger, Berklee College of Music

2.1 Introduction
2.1.1 The Header Section
2.1.2 The Instrument Section
2.1.3 Orchestra Statements
2.1.4 Comments

2.2 Toot 1: Play One Note

2.3 Toot 2: "P-Fields"

2.4 Toot 3: Envelopes

2.5 Toot 4: Chorusing

2.6 Toot 5: Vibrato

2.7 Toot 6: GENs

2.8 Toot 7: Crossfade

2.9 Toot 8: Soundin

2.10 Toot 9: Global Stereo Reverb

2.11 Toot 10: Filtered Noise

2.12 Toot 11: Carry, Tempo, & Sort
2.12.1 Carry
2.12.2 Ramping
2.12.3 Tempo
2.12.4 Score Sections
2.12.5 Adding Extra Time
2.12.6 Sort

2.13 Toot 12: Tables & Labels

2.14 Toot 13: Spectral Fusion

2.15 When Things Sound Wrong

2.16 Suggestions for Further Study

 The Public Csound Reference Manual 2 Supplement - Tutorials

1.1 Toot Introduction

Csound instruments are created in an orchestra file, and the list of notes to play is written
in a separate score file. Both are created using a standard word processor. When you run
Csound on a specific orchestra and score, the score is sorted and ordered in time, the
orchestra is translated and loaded, the wavetables are computed and filled, and then the
score is performed. The score drives the orchestra by telling the specific instruments
when and for how long to play, and what parameters to use during the course of each note
event.

Unlike today's commercial hardware synthesizers, which have a limited set of oscillators,
envelope generators, filters, and a fixed number of ways in which these can be
interconnected, Csound's power is not limited. If you want an instrument with hundreds
of oscillators, envelope generators, and filters you just type them in. More important is
the freedom to interconnect the modules, and to interrelate the parameters which control
them. Like acoustic instruments, Csound instruments can exhibit a sensitivity to the
musical context, and display a level of "musical intelligence" to which hardware
synthesizers can only aspire.

Because the intent of this tutorial is to familiarize the novice with the syntax of the
language, we will design several simple instruments. You will find many instruments of
the sophistication described above in various Csound directories, and a study of these will
reveal Csound's real power.

The Csound orchestra file has two main parts:

1. the header section - defining the sample rate, control rate, and number of output
channels.

2. the instrument section - in which the instruments are designed.

1.1.1 THE HEADER SECTION
A Csound orchestra generates signals at two rates - an audio sample rate and a control
sample rate. Each can represent signals with frequencies no higher than half that rate, but
the distinction between audio signals and sub-audio control signals is useful since it
allows slower moving signals to require less compute time. In the header below, we have
specified a sample rate of 44.1 kHz, a control rate of 4410 Hz, and then calculated the
number of samples in each control period using the formula: ksmps = sr / kr
 sr = 44100
 kr = 4410
 ksmps = 10
 nchnls = 1

In Csound orchestras and scores, spacing is arbitrary. It is important to be consistent in
laying out your files, and you can use spaces to help this. In the Tutorial Instruments

 The Public Csound Reference Manual 3 Supplement - Tutorials

shown below you will see we have adopted one convention. The reader can choose his or
her own.

 The Public Csound Reference Manual 4 Supplement - Tutorials

1.1.2 THE INSTRUMENT SECTION
All instruments are numbered and are referenced thus in the score. Csound instruments
are similar to patches on a hardware synthesizer. Each instrument consists of a set of
"unit generators," or software "modules," which are "patched" together with "i/o" blocks
– i-, k-, or a-rate variables. Unlike a hardware module, a software module has a number
of variable "arguments" which the user sets to determine its behavior. The four types of
variables are:
 setup only
 i-rate variables, changed at the note rate
 k-rate variables, changed at the control signal rate
 a-rate variables, changed at the audio signal rate

1.1.3 ORCHESTRA STATEMENTS
Each statement occupies a single line and has the same basic format:
 result action arguments

To include an oscillator in our orchestra, you might specify it as follows:

 a1 oscil 10000, 440, 1

The three "arguments" for this oscillator set its amplitude (10000), its frequency (440Hz),
and its wave shape (1). The output is put in i/o block a1. This output symbol is significant
in prescribing the rate at which the oscillator should generate output – here the audio rate.
We could have named the result anything (e.g. asig) as long as it began with the letter
"a".

1.1.4 COMMENTS
To include text in the orchestra or score which will not be interpreted by the program,
precede it with a semicolon. This allows you to fully comment your code. On each line,
any text which follows a semicolon will be ignored by the orchestra and score translators.

 The Public Csound Reference Manual 5 Supplement - Tutorials

1.2 Toot 1: Play One Note

For this and all instrument examples, there exist orchestra and score files in the
Csound subdirectory tutorfiles that the user can run to soundtest each feature
introduced. The instrument code shown below is actually preceded by an orchestra
header section similar to that shown above. If you are running on a RISC computer, each
example will likely run in realtime. During playback (realtime or otherwise) the audio
rate may automatically be modified to suit the local d-a converters.

The first orchestra file, called toot1.orc contains a single instrument which uses an
oscil unit to play a 440Hz sine wave (defined by f1 in the score) at an amplitude of
10000.
instr 1
 a1 oscil 10000, 440, 1
 out a1
endin

Run this with its corresponding score file, toot1.sco :
 f1 0 4096 10 1 ; use "GEN01" to compute a sine wave
 i1 0 4 ; run "instr 1" from time 0
 ; for 4 seconds
 e ; indicate the "end" of the score

Toot 1: oscil

 The Public Csound Reference Manual 6 Supplement - Tutorials

 The Public Csound Reference Manual 7 Supplement - Tutorials

1.3 Toot 2: "P-Fields"

The first instrument was not interesting because it could play only one note at one
amplitude level. We can make things more interesting by allowing the pitch and
amplitude to be defined by parameters in the score. Each column in the score constitutes
a parameter field, numbered from the left. The first three parameter fields of the i
statement have a reserved function:
 p1 = instrument number
 p2 = start time
 p3 = duration

All other parameter fields are determined by the way the sound designer defines his
instrument. In the instrument below, the oscillator's amplitude argument is replaced by p4
and the frequency argument by p5. Now we can change these values at i-time, i.e. with
each note in the score. The orchestra and score files now look like:
instr 2
 a1 oscil p4, p5, 1 ; p4=amp
 out a1 ; p5=freq
endin

 f1 0 4096 10 1 ; sine wave
; instrument start duration amp(p4) freq(p5)
 i2 0 1 2000 880
 i2 1.5 1 4000 440
 i2 3 1 8000 220
 i2 4.5 1 16000 110
 i2 6 1 32000 55
e

Toot 2: oscil with p-fields

 The Public Csound Reference Manual 8 Supplement - Tutorials

 The Public Csound Reference Manual 9 Supplement - Tutorials

1.4 Toot 3: Envelopes

Although in the second instrument we could control and vary the overall amplitude from
note to note, it would be more musical if we could contour the loudness during the course
of each note. To do this we'll need to employ an additional unit generator linen, which
the Csound reference manual defines as follows:
 kr linen kamp, irise, idur, idec
 ar linen xamp, irise, idur, idec

linen is a signal modifier, capable of computing its output at either control or audio rates.
Since we plan to use it to modify the amplitude envelope of the oscillator, we'll choose
the latter version. Three of linen's arguments expect i-rate variables. The fourth expects in
one instance a k-rate variable (or anything slower), and in the other an x-variable
(meaning a-rate or anything slower). Our linen we will get its amp from p4.

The output of the linen (k1) is patched into the kamp argument of an oscil. This applies
an envelope to the oscil. The orchestra and score files now appear as:
instr 3
 k1 linen p4, p6, p3, p7 ; p4=amp
 a1 oscil k1, p5, 1 ; p5=freq
 out a1 ; p6=attack time
endin ; p7=release time

 f1 0 4096 10 1 ; sine wave
;instr start duration amp(p4) freq(p5) attack(p6) release(p7)
 i3 0 1 10000 440 .05 .7
 i3 1.5 1 10000 440 .9 .1
 i3 3 1 5000 880 .02 .99
 i3 4.5 1 5000 880 .7 .01
 i3 6 2 20000 220 .5 .5
 e

Toot 3: linen applied to oscil

 The Public Csound Reference Manual 10 Supplement - Tutorials

1.5 Toot 4: Chorusing

Next we'll animate the basic sound by mixing it with two slightly de-tuned copies of
itself. We'll employ Csound's cpspch value converter which will allow us to specify the
pitches by octave and pitch-class rather than by frequency, and we'll use the ampdb
converter to specify loudness in dB rather than linearly.

Since we are adding the outputs of three oscillators, each with the same amplitude
envelope, we'll scale the amplitude before we mix them. Both iscale and inote are
arbitrary names to make the design a bit easier to read. Each is an i-rate variable,
evaluated when the instrument is initialized.
instr 4 ; toot4.orc
 iamp = ampdb(p4) ; convert decibels to linear

amp
 iscale = iamp * .333 ; scale the amp at

initialization
 inote = cpspch(p5) ; convert "octave.pitch" to

cps
 k1 linen iscale, p6, p3, p7 ; p4=amp
 a3 oscil k1, inote*.996, 1 ; p5=freq
 a2 oscil k1, inote*1.004, 1 ; p6=attack time
 a1 oscil k1, inote, 1 ; p7=release time
 a1 = a1 + a2 + a3
 out a1
endin

 f1 0 4096 10 1 ; sine wave
;instr start duration amp(p4) freq(p5) attack(p6) release(p7)
 i4 0 1 75 8.04 .1 .7
 i4 1 1 70 8.02 .07 .6
 i4 2 1 75 8.00 .05 .5
 i4 3 1 70 8.02 .05 .4
 i4 4 1 85 8.04 .1 .5
 i4 5 1 80 8.04 .05 .5
 i4 6 2 90 8.04 .03 1
e

 The Public Csound Reference Manual 11 Supplement - Tutorials

Toot 4: multiple oscils with value converters

 The Public Csound Reference Manual 12 Supplement - Tutorials

1.6 Toot 5: Vibrato

To add some delayed vibrato to our chorusing instrument we use another oscillator for
the vibrato and a line segment generator, linseg, as a means of controlling the delay.
linseg is a k-rate or a-rate signal generator which traces a series of straight line segments
between any number of specified points. The Csound manual describes it as:
 kr linseg ia, idur1, ib[, idur2, ic[...]]
 ar linseg ia, idur1, ib[, idur2, ic[...]]

Since we intend to use this to slowly scale the amount of signal coming from our vibrato
oscillator, we'll choose the k-rate version. The i-rate variables: ia, ib, ic, etc., are the
values for the points. The i-rate variables: idur1, idur2, idur3, etc., set the duration, in
seconds, between segments.
instr 5 ; toot5.orc
 irel = .01 ; set vibrato

release
 ; time
 idel1 = p3 - (p10 * p3) ; calculate

initial
 : delay (% of

dur)
 isus = p3 - (idel1- irel) ; calculate

remaining
 ; duration
 iamp = ampdb(p4) ; p4=amp
 iscale b iamp * .333
 inote = cpspch(p5) ; p5=freq
 k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
 k2 oscil k3, p8, 1 ; p7=release

time
 k1 linen iscale, p6, p3, p7 ; p8=vib rate
 a3 oscil k1, inote*.995+k2, 1 ; p9=vib depth
 a2 oscil k1, inote*1.005+k2, 1 ; p10=vib delay

(0-1)
 a1 oscil k1, inote+k2, 1
 out a1+a2+a3
endin

 ;toot5.sco
 f 1 0 4096 10 1
;ins strt dur amp frq atk rel vibrt vibdpth vibdel
 i5 0 3 86 10.00 .1 .7 7 6 .4
 i5 4 3 86 10.02 1 .2 6 6 .4
 i5 8 4 86 10.04 2 1 5 6 .4
 e

 The Public Csound Reference Manual 13 Supplement - Tutorials

Toot 5: Vibrato

 The Public Csound Reference Manual 14 Supplement - Tutorials

1.7 Toot 6: Gens

The first character in a score statement is an opcode, determining an action request; the
remaining data consists of numeric parameter fields (p-fields) to be used by that action.
So far we have been dealing with two different opcodes in our score: f and i. i statements,
or note statements, invoke the p1 instrument at time p2 and turn it off after p3 seconds;
all remaining p-fields are passed to the instrument.

f statements, or lines with an opcode of f, invoke function-drawing subroutines called
GENS. In Csound there are currently twenty-three GEN routines which fill wavetables in
a variety of ways. For example, GEN01 transfers data from a soundfile; GEN07 allows
you to construct functions from segments of straight lines; and GEN10, which we've
been using in our scores so far, generates composite waveforms made up of a weighted
sum of simple sinusoids. We have named the function "f1," invoked it at time 0, defined
it to contain 512 points, and instructed GEN10 to fill that wavetable with a single
sinusoid whose amplitude is 1. GEN10 can in fact be used to approximate a variety of
other waveforms, as illustrated by the following:
 f1 0 2048 10 1 ;

Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ;

Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ;

Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ;

Pulse

For the opcode f, the first four p-fields are interpreted as follows:
 p1 - table number - In the orchestra, you reference this table by its

number.
 p2 - creation time - The time at which the function is generated.
 p3 - table size - Number of points in table - must be a power of 2,

or that plus 1.
 p4 - generating subroutine - Which of the 17 GENS will you employ.
 p5 -> p? - meaning determined by the particular GEN subroutine.

In the instrument and score below, we have added three additional functions to the score,
and modified the orchestra so that the instrument can call them via p11.
instr 6 ; toot6.orc
 ifunc = p11 ; select basic
 ; waveform
 irel = .01 ; set vibrato

release
 idel1 = p3 - (p10 * p3) ; calculate

initial
 ; delay
 isus = p3 - (idel1- irel) ; calculate

remaining
 ; dur
 iamp = ampdb(p4)
 iscale = iamp * .333 ; p4=amp

 The Public Csound Reference Manual 15 Supplement - Tutorials

 inote = cpspch(p5) ; p5=freq
 k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
 k2 oscil k3, p8, 1 ; p7=release

time
 k1 linen iscale, p6, p3, p7 ; p8=vib rate
 a3 oscil k1, inote*.999+k2, ifunc ; p9=vib depth
 a2 oscil k1, inote*1.001+k2, ifunc ; p10=vib delay

(0-1)
 a1 oscil k1, inote+k2, ifunc
 out a1 + a2 + a3
endin

 The Public Csound Reference Manual 16 Supplement - Tutorials

 ;toot6.sco
 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse
;ins strt dur amp frq atk rel vibrt vibdpth vibdel

waveform(f)
 i6 0 2 86 8.00 .03 .7 6 9 .8 1
 i6 3 2 86 8.02 .03 .7 6 9 .8 2
 i6 6 2 86 8.04 .03 .7 6 9 .8 3
 i6 9 3 86 8.05 .03 .7 6 9 .8 4
 e

Toot 6: GENs

 The Public Csound Reference Manual 17 Supplement - Tutorials

1.8 Toot 7: Crossfade

Now we will add the ability to do a linear crossfade between any two of our four basic
waveforms. We will employ our delayed vibrato scheme to regulate the speed of the
crossfade.
instr 7 ; toot7.orc
 ifunc1 = p11 ; initial

waveform
 ifunc2 = p12 ; crossfade

waveform
 ifad1 = p3 - (p13 * p3) ; calculate

initial
 ; fade
 ifad2 = p3 - ifad1 ; calculate

remaining
 ; dur
 irel = .01 ; set vibrato

release
 idel1 = p3 - (p10 * p3) ; calculate

initial
 ; delay
 isus = p3 - (idel1- irel) ; calculate

remaining
 ; dur
 iamp = ampdb(p4)
 iscale = iamp * .166 ; p4=amp
 inote = cpspch(p5) ; p5=freq
 k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
 k2 oscil k3, p8, 1 ; p7=release

time
 k1 linen iscale, p6, p3, p7 ; p8=vib rate
 a6 oscil k1, inote*.998+k2, ifunc2 ; p9=vib depth
 a5 oscil k1, inote*1.002+k2, ifunc2 ; p10=vib delay

(0-1)
 a4 oscil k1, inote+k2, ifunc2 ; p11=initial

wave
 a3 oscil k1, inote*.997+k2, ifunc1 ; p12=cross wave
 a2 oscil k1, inote*1.003+k2, ifunc1 ; p13=fade time
 a1 oscil k1, inote+k2, ifunc1
 kfade linseg 1, ifad1, 0, ifad2, 1
 afunc1 = kfade * (a1+a2+a3)
 afunc2 = (1 - kfade) * (a4+a5+a6)
 out afunc1 + afunc2
endin

 ; toot7.sco
 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

 The Public Csound Reference Manual 18 Supplement - Tutorials

;ins strt dur amp frq atk rel vibrt vbdpt vibdel strtwav endwav
crosstime

 i7 0 5 96 8.07 .03 .1 5 6 .99 1 2 .1
 i7 6 5 96 8.09 .03 .1 5 6 .99 1 3 .1
 i7 12 8 96 8.07 .03 .1 5 6 .99 1 4 .1
e

 The Public Csound Reference Manual 19 Supplement - Tutorials

Toot 7: Crossfade

 The Public Csound Reference Manual 20 Supplement - Tutorials

1.9 Toot 8: Soundin

Now instead of continuing to enhance the same instrument, let us design a totally
different one. We'll read a soundfile into the orchestra, apply an amplitude envelope to it,
and add some reverb. To do this we will employ Csound's soundin and reverb
generators. The first is described as:
 a1 soundin ifilcod[, iskiptime[, iformat]]

soundin derives its signal from a pre-existing file. ifilcod is either the filename in double
quotes, or an integer suffix (.n) to the name "soundin". Thus the file soundin.5 could be
referenced either by the quoted name or by the integer 5. To read from 500ms into this
file we might say:
 a1 soundin "soundin.5", .5

The Csound reverb generator is actually composed of four parallel comb filters plus two
allpass filters in series. Although we could design a variant of our own using these same
primitives, the preset reverb is convenient, and simulates a natural room response via
internal parameter values. Only two arguments are required the input (asig) and the
reverb time (krvt)
 ar reverb asig, krvt

The soundfile instrument with artificial envelope and a reverb (included directly) is as
follows:
instr 8 ; toot8.orc
 idur = p3
 iamp = p4
 iskiptime = p5
 iattack = p6
 irelease = p7
 irvbtime = p8
 irvbgain = p9
 kamp linen iamp, iattack, idur, irelease
 asig soundin "soundin.aiff", iskiptime
 arampsig = kamp * asig
 aeffect reverb asig, irvbtime
 arvbreturn = aeffect * irvbgain
 out arampsig + arvbreturn
endin

 ;toot8.sco
;ins strt dur amp skip atk re rvbtime rvbgain
 i8 0 1 .3 0 .03 .1 1.5 .2
 i8 2 1 .3 0 .1 .1 1.3 .2
 i8 3.5 2.25 .3 0 .5 .1 2.1 .2
 i8 4.5 2.25 .3 0 .01 .1 1.1 .2
 i8 5 2.25 .3 .1 .01 .1 1.1 .1
e

 The Public Csound Reference Manual 21 Supplement - Tutorials

Toot 8: soundin

 The Public Csound Reference Manual 22 Supplement - Tutorials

1.10 Toot 9: Global Stereo Reverb

In the previous example you may have noticed the soundin source being “cut off” at ends
of notes, because the reverb was inside the instrument itself. It is better to create a
companion instrument, a global reverb instrument, to which the source signal can be sent.
Let's also make this stereo.

Variables are named cells which store numbers. In Csound, they can be either local or
global, are available continuously, and can be updated at one of four rates - setup, i-rate,
k-rate, or a-rate.

Local variables (which begin with the letters p, i, k, or a) are private to a particular
instrument. They cannot be read from, or written to, by any other instrument.

Global Variables are cells which are accessible by all instruments. Three of the same
four variable types are supported (i, k, and a), but these letters are preceded by the letter
“g” to identify them as “global.” Global variables are used for “broadcasting” general
values, for communicating between instruments, and for sending sound from one
instrument to another.

The reverb instr99 below receives input from instr9 via the global a-rate variable
garvbsig. Since instr9 adds into this global, several copies of instr9 can do this without
losing any data. The addition requires garvbsig to be cleared before each k-rate pass
through any active instruments. This is accomplished first with an init statement in the
orchestra header, giving the reverb instrument a higher number than any other
(instruments are performed in numerical order), and then clearing garvbsig within instr99
once its data has been placed into the reverb.
sr = 44100 ; toot9.orc
kr = 4410
ksmps = 10
nchnls = 2 ; stereo
garvbsig init 0 ; make zero at orch init

time

instr 9
 idur = p3
 iamp = p4
 iskiptime = p5
 iattack = p6
 irelease = p7
 ibalance = p8 ; panning: 1=left, .5=center,

0=right
 irvbgain = p9
 kamp linen iamp, iattack, idur, irelease
 asig soundin "soundin.aiff", iskiptime
 arampsig = kamp * asig
 outs arampsig * ibalance, arampsig * (1 - ibalance)
 garvbsig = garvbsig + arampsig * irvbgain
endin

 The Public Csound Reference Manual 23 Supplement - Tutorials

instr 99 ; global reverb
 irvbtime = p4
 sig reverb garvbsig, irvbtime ; put global signal into

reverb
 outs sig, asig
 garvbsig = 0 ; then clear it
endin

 The Public Csound Reference Manual 24 Supplement - Tutorials

In the score we turn the global reverb on at time 0 and keep it on until irvbtime after the
last note.
; ins strt dur rvbtime ; toot9.sco
 i99 0 9.85 2.6

;ins strt dur amp skip atk rel balance(0-1) rvbsend
 i9 0 1 .5 0 .02 .1 1 .2
 i9 2 2 .5 0 .03 .1 0 .3
 i9 3.5 2.25 .5 0 .9 .1 .5 .1
 i9 4.5 2.25 .5 0 1.2 .1 0 .2
 i9 5 2.25 .5 0 .2 .1 1 .3
 e

Toot 9: Global Stereo Reverb

 The Public Csound Reference Manual 25 Supplement - Tutorials

1.11 Toot 10: Filtered Noise

The following instrument uses the Csound rand unit to produce noise, and a reson unit to
filter it. The bandwidth of reson will be set at i-time, but its center frequency will be
swept via a line unit through a wide range of frequencies during each note. We add
reverb as in Toot 9.
garvbsig init 0

instr 10 ; toot10.orc
 iattack = .01
 irelease = .2
 iwhite = 10000
 idur = p3
 iamp = p4
 isweepstar = p5
 isweepend = p6
 ibandwidth = p7
 ibalance = p8 ; pan: 1 = left, .5 = center, 0 =

right
 irvbgain = p9
 kamp linen iamp, iattack, idur, irelease
 ksweep line isweepstart, idur, isweepend
 asig rand iwhite
 afilt reson asig, ksweep, ibandwidth
 arampsig = kamp * afilt
 outs arampsig * ibalance, arampsig * (1 - ibalance)
 garvbsig = garvbsig + arampsig * irvbgain
endin

instr 100
 irvbtime = p4
 asig reverb garvbsig, irvbtime
 outs asig, asig
 garvbsig = 0
endin

 ;toot10.sco
; ins strt dur rvbtime
 i100 0 15 1.1
 i100 15 10 5

;ins strt dur amp stswp ndswp bndwth balance(0-1) rvbsend
 i10 0 2 .05 5000 500 20 .5 .1
 i10 3 1 .05 1500 5000 30 .5 .1
 i10 5 2 .05 850 1100 40 .5 .1
 i10 8 2 .05 1100 8000 50 .5 .1
 i10 8 .5 .05 5000 1000 30 .5 .2
 i10 9 .5 .05 1000 8000 40 .5 .1
 i10 11 .5 .05 500 2100 50 .4 .2
 i10 12 .5 .05 2100 1220 75 .6 .1
 i10 13 .5 .05 1700 3500 100 .5 .2
 i10 15 5 .01 8000 800 60 .5 .15

 The Public Csound Reference Manual 26 Supplement - Tutorials

 e

 The Public Csound Reference Manual 27 Supplement - Tutorials

Toot 10: Filtered Noise

 The Public Csound Reference Manual 28 Supplement - Tutorials

1.12 Toot 11: Carry, Tempo & Sort

We now use a plucked string instrument to explore some of Csound's score preprocessing
capabilities. Since the focus here is on the score, the instrument is presented without
explanation.
instr 11
 asig1 pluck ampdb(p4)/2, p5, p5, 0, 1
 asig2 pluck ampdb(p4)/2, p5 * 1.003, p5 * 1.003, 0, 1
 out asig1+asig2
endin

The score can be divided into time-ordered sections by the s statement. Prior to
performance, each section is processed by three routines: Carry, Tempo, and Sort. The
score toot11.sco has multiple sections containing each of the examples below, in both
of the forms listed.

1.12.1 CARRY
The carry feature allows a dot (".") in a p-field to indicate that the value is the same as
above, provided the instrument is the same. Thus the following two examples are
identical:
;ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i11 1 . . 300 | i11 1 1 90 300
 i11 2 . . 400 | i11 2 1 90 400

A special form of the carry feature applies to p2 only. A "+" in p2 will be given the value
of p2+p3 from the previous i statement. The "+" can also be carried with a dot:
;ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i. + . . 300 | i11 1 1 90 300
 i. . . . 500 | i11 2 1 90 500

The carrying dot may be omitted when there are no more explicit pfields on that line:
;ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i11 + 2 | i11 1 2 90 200
 i11 | i11 3 2 90 200

1.12.2 RAMPING
A variant of the carry feature is ramping, which substitutes a sequence of linearly
interpolated values for a ramp symbol (<) spanning any two values of a pfield. Ramps
work only on consecutive calls to the same instrument, and they cannot be applied to the
first three p-fields.
;ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i . + . < < | i11 1 1 85 300
 i . . . < 400 | i11 2 1 80 400
 i . . . < < | i11 3 1 75 300

 The Public Csound Reference Manual 29 Supplement - Tutorials

 i . . 4 70 200 | i11 4 4 70 200

 The Public Csound Reference Manual 30 Supplement - Tutorials

1.12.3 TEMPO
The unit of time in a Csound score is the beat - normally one beat per second. This can be
modified by a tempo statement which enables the score to be arbitrarily time-warped.
Beats are converted to their equivalent in seconds during score pre-processing of each
Section. In the absence of a Tempo statement in any Section, the following tempo
statement is inserted:
 t 0 60

It means that at beat 0 the tempo of the Csound beat is 60 (1 beat per second). To hear the
Section at twice the speed, we have two options: 1) cut all p2 and p3 in half and adjust
the start times, or 2) insert the statement t 0 120 within the Section.

The tempo statement can also be used to move between different tempi during the score,
thus enabling ritardandi and accelerandi. Changes are linear by beat size. The following
statement will cause the score to begin at tempo 120, slow to tempo 80 by beat 4, then
accelerate to 220 by beat 7:
 t 0 120 4 80 7 220

The following will produce identical sound files:
 t 0 120 ; Double-time

via Tempo
;ins start dur amp freq | ; ins start dur amp freq
 i11 0 .5 90 200 | i11 0 1 90 200
 i . + . < < | i . + . < <
 i . . . < 400 | i . . . < 400
 i . . . < < | i . . . < <
 i . . 2 70 200 | i . . 4 70 200

The following includes an accelerando and ritard. It should be noted, however, that the
ramping feature is applied after time-warping, and is thus proportional to elapsed
chronological time. While this is perfect for amplitude ramps, frequency ramps will not
result in harmonically related pitches during tempo changes. The frequencies needed here
are thus made explicit.
 t 0 60 4 400 8 60 ; Time-warping via Tempo
 ; ins start dur amp freq
 i11 0 1 70 200
 i . + . < 500
 i . . . 90 800
 i . . . < 500
 i . . . 70 200
 i . . . 90 1000
 i . . . < 600
 i . . . 70 200
 i . . 8 90 100

 The Public Csound Reference Manual 31 Supplement - Tutorials

1.12.4 SCORE SECTIONS
Three additional score features are extremely useful in Csound. The s statement was used
above to divide a score into Sections for individual pre-processing. Since each s
statement establishes a new relative time of 0, and all actions within a section are relative
to that, it is convenient to develop the score one section at a time, then link the sections
into a whole later.

Suppose we wish to combine the six above examples (call them toot11a - toot11f)
into one score. One way is to start with toot11a.sco, calculate its total duration and
add that value to every starting time of toot11b.sco, then add the composite duration
to the start times of toot11c.sco, etc. Alternatively, we could insert an s statement
between each of the sections and run the entire score. The file toot11.sco, which
contains a sequence of all of the above score examples, did just that.

1.12.5 ADDING EXTRA TIME
The f0 statement, which creates an "action time" with no associated action, is useful in
extending the duration of a section. Two seconds of silence are added to the first two
sections below.
; ins start dur amp freq ; toot11g.sco
 i11 0 2 90 100
 f 0 4 ; The f0 Statement
 s ; The Section Statement
 i11 0 1 90 800
 i . + . . 400
 i 100
 f 0 5
 s
 i11 0 4 90 50
 e

1.12.6 SORT
During preprocessing of a score section, all action-time statements are sorted into
chronological order by p2 value. This means that notes can be entered in any order, that
you can merge files, or work on instruments as temporarily separate sections, then have
them sorted automatically when you run Csound on the file.

The file below contains excerpts from this section of the rehearsal chapter and from instr6
of the tutorial, and combines them as follows:
; ins start dur amp freq ; toot11h.sco
 i11 0 1 70 100 ; Score Sorting
 i . + . < <
 i . . . < <
 i . . . 90 800
 i . . . < <
 i . . . < <
 i . . . 70 100
 i . . . 90 1000

 The Public Csound Reference Manual 32 Supplement - Tutorials

 i . . . < <
 i . . . < <
 i . . . < <
 i . . . 70 <
 i . . 8 90 50

 The Public Csound Reference Manual 33 Supplement - Tutorials

 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

; ins strt dur amp frq atk rel vibr vibdpth vibdel waveform
 i6 0 2 86 9.00 .03 .1 6 5 .4 1
 i6 2 2 86 9.02 .03 .1 6 5 .4 2
 i6 4 2 86 9.04 .03 .1 6 5 .4 3
 i6 6 4 86 9.05 .05 .1 6 5 .4 4

Toot 11: Carry, Tempo, and Sort

 The Public Csound Reference Manual 34 Supplement - Tutorials

1.13 Toot 12: Tables and Labels

This is by far our most complex instrument. In it we have designed the ability to store
pitches in a table, and then index them in three different ways: 1) directly, 2) via an lfo,
and 3) randomly. As a means of switching between these three methods, we will use
Csound's program control statements and logical and conditional operations.
instr 12 ;toot12.orc
 iseed = p8
 iamp = ampdb(p4)
 kdirect = p5
 imeth = p6
 ilforate = p7 ; lfo and random index

rate
 itab = 2
 itablesize = 8

 if (imeth == 1) igoto direct
 if (imeth == 2) kgoto lfo
 if (imeth == 3) kgoto random

direct: kpitch table kdirect, itab ; index "f2" via p5
 kgoto contin

lfo: kindex phasor ilforate
 kpitch table kindex * itablesize, itab
 kgoto contin

random: kindex randh int(7), ilforate, iseed
 kpitch table abs(kindex), itab

contin: kamp linseg 0, p3 * .1, iamp, p3 * .9, 0 ; amp

envelope
 asig oscil kamp, cpspch(kpitch), 1 ; audio osc
 out asig
endin

 ;toot12.sco
f1 0 2048 10 1 ; sine
f2 0 8 -2 8.00 8.02 8.04 8.05 8.07 8.09 8.11 9.00 ; cpspch C major

scale

; method 1 - direct index of table values
; ins start dur amp index method lforate rndseed
 i12 0 .5 86 7 1 0 0
 i12 .5 .5 86 6 1 0
 i12 1 .5 86 5 1 0
 i12 1.5 .5 86 4 1 0
 i12 2 .5 86 3 1 0
 i12 2.5 .5 86 2 1 0
 i12 3 .5 86 1 1 0
 i12 3.5 .5 86 0 1 0
 i12 4 .5 86 0 1 0

 The Public Csound Reference Manual 35 Supplement - Tutorials

 i12 4.5 .5 86 2 1 0
 i12 5 .5 86 4 1 0
 i12 5.5 2.5 86 7 1 0
s

 The Public Csound Reference Manual 36 Supplement - Tutorials

; method 2 - lfo index of table values
; ins start dur amp index method lforate rndseed
 i12 0 2 86 0 2 1 0
 i12 3 2 86 0 2 2
 i12 6 2 86 0 2 4
 i12 9 2 86 0 2 8
 i12 12 2 86 0 2 16
s

; method 3 - random index of table values
; ins start dur amp index method rndrate rndseed
 i12 0 2 86 0 3 2 .1
 i12 3 2 86 0 3 3 .2
 i12 6 2 86 0 3 4 .3
 i12 9 2 86 0 3 7 .4
 i12 12 2 86 0 3 11 .5
 i12 15 2 86 0 3 18 .6
 i12 18 2 86 0 3 29 .7
 i12 21 2 86 0 3 47 .8
 i12 24 2 86 0 3 76 .9
 i12 27 2 86 0 3 123 .9
 i12 30 5 86 0 3 199 .1
e

 The Public Csound Reference Manual 37 Supplement - Tutorials

Toot 12: Tables and Labels

 The Public Csound Reference Manual 38 Supplement - Tutorials

1.14 Toot 13: Spectral Fusion

For our final instrument, we will employ three unique synthesis methods: Physical
Modeling, Formant-Wave Synthesis, and Non-linear Distortion. Three of Csound's most
powerful unit generators - pluck, fof, and foscil, make this complex task a fairly simple
one. The Reference Manual describes these as follows:
 ar pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]

pluck simulates the sound of naturally decaying plucked strings by filling a cyclic decay
buffer with noise and then smoothing it over time according to one of several methods.
The unit is based on the Karplus-Strong algorithm.

 ar fof xamp, xfund, xform, koct, kband, kris, kdur

kdec,\\ iolaps, ifna, ifnb, itotdur[, iphs[,
ifmode]]

fof simulates the sound of the male voice by producing a set of harmonically related
partials (a formant region) whose spectral envelope can be controlled over time. It is a
special form of granular synthesis, based on the CHANT program from IRCAM by
Xavier Rodet et al.

 ar foscil xamp, kcps, kcar, kmod, kndx, ifn [, iphs]

foscil is a composite unit which banks two oscillators in a simple FM configuration,
wherein the audio-rate output of one (the "modulator") is used to modulate the frequency
input of another (the "carrier.")

The plan for our instrument is to have the plucked string attack dissolve into an FM
sustain which transforms into a vocal release. The orchestra and score are as follows:
instr 13 ; toot13.orc
 iamp = ampdb(p4) / 2 ; amplitude, scaled for two

sources
 ipluckamp = p6 ; % of total amp, 1=dB amp as in

p4
 ipluckdur = p7*p3 ; % of total dur, 1=entire dur of

note
 ipluckoff = p3 - ipluckdur
 ifmamp = p8 ; % of total amp, 1=dB amp as in

p4
 ifmrise = p9*p3 ; % of total dur, 1=entire dur of

note
 ifmdec = p10*p3 ; % of total duration
 ifmoff = p3 - (ifmrise + ifmdec)
 index = p11
 ivibdepth = p12
 ivibrate = p13
 iformantamp = p14 ; % of total amp, 1=dB amp as in

p4

 The Public Csound Reference Manual 39 Supplement - Tutorials

 iformantrise = p15*p3 ; % of total dur, 1=entire dur of
note

 iformantdec = p3 - iformantrise

 The Public Csound Reference Manual 40 Supplement - Tutorials

 kpluck linseg ipluckamp, ipluckdur, 0, ipluckoff, 0
 apluck1 pluck iamp, p5, p5, 0, 1
 apluck2 pluck iamp, p5*1.003, p5*1.003, 0, 1
 apluck = kpluck * (apluck1+apluck2)

 kfm linseg 0, ifmrise, ifmamp, ifmdec, 0, ifmoff, 0
 kndx = kfm * index
 afm1 foscil iamp, p5, 1, 2, kndx, 1
 afm2 foscil iamp, p5*1.003, 1.003, 2.003, kndx, 1
 afm = kfm * (afm1+afm2)

 kfrmnt linseg 0, iformantrise, iformantamp, iformantdec, 0
 kvib oscil ivibdepth, ivibrate, 1
 afrmnt1 fof iamp, p5+kvib, 650, 0, 40, .003, .017, .007, 4,

1,\\ 2, p3
 afrmnt2 fof iamp, (p5*1.001)+kvib*.009, 650, 0, 40, .003,

.017,\\ .007, 10, 1, 2, p3
 aformnt = kfrmnt * (afrmnt1+afrmnt2)

 out apluck + afm + aformnt
endin

 ; toot13.sco
f1 0 8192 10 1 ; sine wave
f2 0 2048 19 .5 1 270 1 ; sigmoid rise

;i st dr mp frq plkmp plkdr fmp fmris fmdec indx vbdp vbrt frmp

fris
i13 0 5 80 200 .8 .3 .7 .2 .35 8 1 5 3

.5
i13 + 8 80 100 . .4 .7 .35 .35 7 1 6 3

.7
i13 . 13 80 50 . .3 .7 .2 .4 6 1 4 3

.6

 The Public Csound Reference Manual 41 Supplement - Tutorials

Toot 13: Spectral Fusion

 The Public Csound Reference Manual 42 Supplement - Tutorials

1.15 When Things Sound Wrong

When you design your own Csound instruments you may occasionally be surprised by
the results. There will be times when you've computed a file for hours and your playback
is just silence, while at other times you may get error messages which prevent the score
from running, or you may hang the computer and nothing happens at all.

In general, Csound has a comprehensive error-checking facility that reports to your
console at various stages of your run: at score sorting, orchestra translation, initializing
each call of every instrument, and during performance. However, if your error was
syntactically permissable, or it generated only a warning message, Csound could
faithfully give you results you don't expect. Here is a list of the things you might check in
your score and orchestra files:

1. You typed the letter ‘l’ instead of the number ‘1.’

2. You forgot to precede your comment with a semi-colon.

3. You forgot an opcode or a required parameter.

4. Your amplitudes are not loud enough, or they are too loud.

5. Your frequencies are not in the audio range - 20Hz to 20kHz.

6. You placed the value of one parameter in the p-field of another.

7. You left out some crucial information like a function definition.

8. You didn't meet the GEN specifications.

 The Public Csound Reference Manual 43 Supplement - Tutorials

1.16 Suggestions for Further Study

Csound is such a powerful tool that we have touched on only a few of its many features
and uses. You are encouraged to take apart the instruments in the tutorials, rebuild them,
modify them, and integrate the features of one into the design of another. To understand
their capabilities you should compose short etudes with each. You may be surprised to
find yourself merging these little studies into the fabric of your first Csound
compositions.

There are many sources of information on Csound and software synthesis. The ultimate
sourcebook for Csound is The Csound Book: Perspectives in Software Synthesis, Sound
Design, Signal Processing, and Programming, edited by Richard Boulanger, and
published by MIT Press.

Nothing will increase your understanding more than actually making music with Csound.
The best way to discover the full capability of these tools is to create your own music
with them. As you negotiate the new and uncharted terrain you will make many
discoveries. It is my hope that through Csound you discover as much about music as I
have, and that this experience brings you great personal satisfaction and joy.

Richard Boulanger
Boston, Massachusetts USA
March, 1991

