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ABSTRACT

We present two recently introduced extensions to the FAUST
compiler. The first one concerns the architecture system
and provides Open Sound Control (OSC) support to all
FAUST generated applications. The second extension is
related to preservation issues and provides a mean to au-
tomatically compute an all-comprehensive mathematical
documentation of any FAUST program.

1. INTRODUCTION

FAUST 1 (Functional Audio Stream) is a functional, syn-
chronous, domain specific language designed for real-time
signal processing and synthesis. A unique feature of FAUST,
compared to other existing languages like Max, PD, Super-
collider, etc., is that programs are not interpreted, but fully
compiled.

One can think of FAUST as a specification language. It
aims at providing the user with an adequate notation to
describe signal processors from a mathematical point of
view. This specification is free, as much as possible, from
implementation details. It is the role of the FAUST com-
piler to provide automatically the best possible implemen-
tation. The compiler translates FAUST programs into equiv-
alent C++ programs taking care of generating the most ef-
ficient code. The compiler offers various options to control
the generated code, including options to do fully automatic
parallelization and take advantage of multicore machines.

From a syntactic point of view FAUST is a textual lan-
guage, but nevertheless block-diagram oriented. It actu-
ally combines two approaches: functional programming
and algebraic block-diagrams. The key idea is to view
block-diagram construction as function composition. For
that purpose, FAUST relies on a block-diagram algebra of
five composition operations (: , ˜ <: :>).

For more details on the language we refer the reader to
[1] [2]. Here is how to write a pseudo random number
generator r in FAUST 2 :
r = +(12345)˜ *(1103515245);
This example uses the recursive composition operator ˜

to create a feedback loop as illustrated figure 1.
The code generated by the FAUST compiler works at the

sample level, it is therefore suited to implement low-level
DSP functions like recursive filters up to full-scale audio
applications. It can be easily embedded as it is self-contained

1 http://faust.grame.fr
2 Please note that this expression produces a signal r(t) = 12345 +

1103515245 ∗ r(t − 1) that exploits the particularity of 32-bits integer
operations.

Figure 1. Block-diagram of a noise generator. This image
is produced by the FAUST compiler using the -svg option.

and doesn’t depend of any DSP library or runtime system.
Moreover, it has a very deterministic behavior and a con-
stant memory footprint.

The compiler can also wrap the generated code into an
architecture file that describes how to relate the DSP com-
putation to the external world. We have recently reorga-
nized some of these architecture files in order to provide
Open Sound Control (OSC) support. All FAUST generated
applications can now be controlled by OSC. We will de-
scribe this evolution section 2.

Another recent addition is a new documentation backend
to the FAUST compiler. It provides a mean to automatically
compute an all-comprehensive mathematical documenta-
tion of a FAUST program under the form of a complete set
of LATEX formulas and diagrams. We will describe this Self
Mathematical Documentation system section 3.

2. ARCHITECTURE FILES

Being a specification language, FAUST programs say noth-
ing about audio drivers nor GUI toolkits to be used. It is
the role of the architecture file to describe how to relate the
DSP module to the external world. This approach allows a
single FAUST program to be easily deployed to a large vari-
ety of audio standards (Max/MSP externals, PD externals,
VST plugins, CoreAudio applications, Jack applications,
iPhone, etc.). In the following sections we will detail this
architecture mechanism and in particular the recently de-
veloped OSC architecture that allows FAUST programs to
be controlled by OSC messages.
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2.1 Audio architecture files

A FAUST audio architecture typically connects the FAUST
DSP module to the audio drivers. It is responsible for al-
locating and releasing the audio channels and to call the
FAUST dsp::compute method to handle incoming audio
buffers and/or to produce audio output. It is also responsi-
ble for presenting the audio as non-interleaved float data,
normalized between -1.0 and 1.0.

A FAUST audio architecture derives an audio class de-
fined as below:
class audio {
public:

audio() {}
virtual ˜audio() {}
virtual bool init(const char*, dsp*) = 0;
virtual bool start() = 0;
virtual void stop() = 0;

};

The API is simple enough to give a great flexibility to
audio architectures implementations. The init method
should initialize the audio. At init exit, the system should
be in a safe state to recall the dsp object state.

Table 1 gives the audio architectures currently available
for various operating systems.

Audio system Operating system
Alsa Linux

Core audio Mac OS X, iOS
Jack Linux, Mac OS X, Windows

Portaudio Linux, Mac OS X, Windows
OSC (see 2.3.2) Linux, Mac OS X, Windows

VST Mac OS X, Windows
Max/MSP Mac OS X, Windows
CSound Linux, Mac OS X, Windows

SuperCollider Linux, Mac OS X, Windows
PureData Linux, Mac OS X, Windows
Pure [3] Linux, Mac OS X, Windows

Table 1. FAUST audio architectures.

2.2 GUI architecture files

A FAUST UI architecture is a glue between a host control
layer (graphic toolkit, command line, OSC messages, etc.)
and the FAUST DSP module. It is responsible for associ-
ating a FAUST DSP module parameter to a user interface
element and to update the parameter value according to
the user actions. This association is triggered by the dsp
::buildUserInterface call, where the dsp asks a UI
object to build the DSP module controllers.

Since the interface is basically graphic oriented, the main
concepts are widget based: a UI architecture is semanti-
cally oriented to handle active widgets, passive widgets
and widgets layout.

A FAUST UI architecture derives an UI class (Figure 2).

2.2.1 Active widgets

Active widgets are graphical elements that control a pa-
rameter value. They are initialized with the widget name

class UI
{
public:

UI() {}
virtual ˜UI() {}

-- active widgets
virtual void addButton(const char* l, float* z) = 0;
virtual void addToggleButton(const char* l, float* z) = 0;
virtual void addCheckButton(const char* l, float* z) = 0;

virtual void addVerticalSlider(const char* l, float* z,
float init, float min, float max, float step) = 0;

virtual void addHorizontalSlider(const char* l, float* z,
float init, float min, float max, float step) = 0;

virtual void addNumEntry(const char* l, float* z,
float init, float min, float max, float step) = 0;

-- passive widgets
virtual void addNumDisplay(const char* l, float* z,

int p) = 0;

virtual void addTextDisplay(const char* l, float* z,
const char* names[], float min, float max) = 0;

virtual void addHorizontalBargraph(const char* l,
float* z, float min, float max) = 0;

virtual void addVerticalBargraph(const char* l,
float* z, float min, float max) = 0;

-- widget layouts
virtual void openTabBox(const char* l) = 0;
virtual void openHorizontalBox(const char* l) = 0;
virtual void openVerticalBox(const char* l) = 0;
virtual void closeBox() = 0;

-- metadata declarations
virtual void declare(float*, const char*, const char* ) {}

};

Figure 2. UI, the root user interface class.

and a pointer to the linked value. The widget currently
considered are Button, ToggleButton, CheckButton,
VerticalSlider, HorizontalSlider and NumEntry.
A GUI architecture must implement a method
addXxx (const char* name, float* zone, ...) for
each active widget. Additional parameters are available for
Slider and NumEntry: the init value, the min and max
values and the step.

2.2.2 Passive widgets

Passive widgets are graphical elements that reflect values.
Similarly to active widgets, they are initialized with the
widget name and a pointer to the linked value. The wid-
get currently considered are NumDisplay, TextDisplay,
HorizontalBarGraph and VerticalBarGraph.
A UI architecture must implement a method
addxxx (const char* name, float* zone, ...) for
each passive widget. Additional parameters are available,
depending on the passive widget type.

2.2.3 Widgets layout

Generally, a GUI is hierarchically organized into boxes
and/or tab boxes. A UI architecture must support the fol-
lowing methods to setup this hierarchy :
openTabBox (const char* l)
openHorizontalBox (const char* l)
openVerticalBox (const char* l)
closeBox (const char* l)

Note that all the widgets are added to the current box.
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2.2.4 Metadata

The FAUST language allows widget labels to contain meta-
data enclosed in square brackets. These metadata are han-
dled at GUI level by a declare method taking as argu-
ment, a pointer to the widget associated value, the meta-
data key and value:
declare(float*, const char*, const char*)

UI Comment
console a textual command line UI
GTK a GTK-based GUI

Qt a multi-platform Qt-based GUI
FUI a file-based UI to store and recall modules states
OSC OSC control (see 2.3.1)

Table 2. Available UI architectures.

2.3 OSC architectures

The OSC [4] support opens the FAUST applications control
to any OSC capable application or programming language.
It also transforms a full range of devices embedding sen-
sors (wiimote, smart phones, ...) into physical interfaces
for FAUST applications control, allowing a direct use as
music instruments (which is in phase with the new FAUST
physical models library [5] adapted from STK [6]).

The FAUST OSC architecture is twofold: it is declined as
a UI architecture and also as an audio architecture, propos-
ing a new and original way to make digital signal compu-
tation.

2.3.1 OSC GUI architecture

The OSC UI architecture transforms each UI active widget
addition into an addnode call, ignores the passive widgets
and transforms containers calls (openXxxBox, closeBox
) into opengroup and closegroup calls.

The OSC address space adheres strictly to the hierarchy
defined by the addnode and opengroup, closegroup
calls. It supports the OSC pattern matching mechanism as
described in [4].

A node expects to receive OSC messages with a single
float value as parameter. This policy is strict for the pa-
rameters count, but relaxed for the parameter type: OSC
int values are accepted and casted to float.

Two additional messages are defined to provide FAUST
applications discovery and address space discoveries:

• the hello message: accepted by any module root
address. The module responds with its root address,
followed by its IP address, followed by the UDP
ports numbers (listening port, output port, error port).
See the network management section below for ports
numbering scheme.

• the get message: accepted by any valid OSC ad-
dress. The get message is propagated to every ter-
minal node that responds with its OSC address and
current values (value, min and max).

Audio system Environment OSC support
Linux

Alsa GTK, Qt yes
Jack GTK, Qt, Console yes

PortAudio GTK, Qt yes
Mac OS X

CoreAudio Qt yes
Jack Qt, Console yes

PortAudio Qt yes
Windows

Jack Qt, Console yes
PortAudio Qt yes

iOS (iPhone)
CoreAudio Cocoa not yet

Table 3. OSC support in FAUST applications architectures.

Example:
Consider the noise module provided with the FAUST ex-
amples:

• it sends /noise 192.168.0.1 5510 5511 5512

in answer to a hello message,

• it sends /noise/Volume 0.8 0. 1.
in answer to a get message.

The OSC architecture makes use of three different UDP
port numbers:

• 5510 is the listening port number: control messages
should be addressed to this port.

• 5511 is the output port number: answers to query
messages are send to this port.

• 5512 is the error port number: used for asynchronous
errors notifications.

When the UDP listening port number is busy (for in-
stance in case of multiple FAUST modules running), the
system automatically looks for the next available port num-
ber. Unless otherwise specified by the command line, the
UDP output port numbers are unchanged.

A module sends its name (actually its root address) and
allocated ports numbers on the OSC output port on startup.

Ports numbers can be changed on the command line with
the following options:

[-port | -outport | -errport] number
The default UDP output streams destination is localhost

. It can also be changed with the command line option
-dest address where address is a host name or an

IP number.

2.3.2 OSC audio architecture

The OSC audio architecture implements an audio architec-
ture where audio inputs and outputs are replaced by OSC
messages. Using this architecture, a FAUST module ac-
cepts arbitrary data streams on its root OSC address, and
handles this input stream as interleaved signals. Thus, each
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incoming OSC packet addressed to a module root triggers
a computation loop, where as much values as the number
of incoming frames are computed.

The output of the signal computation is sent to the OSC
output port as non-interleaved data to the OSC addresses
/root/n where root is the module root address and n is
the output number (indexed from 0).

For example:
consider a FAUST program named split and defined by:

process = _ <: _,_
the message

/split 0.3
will produce the 2 following messages as output:

/split/0 0.3
/split/1 0.3

The OSC audio architecture provides a very convenient
way to execute a signal processing at an arbitrary rate, al-
lowing even to make step by step computation. Connect-
ing the output OSC signals to Max/MSP or to a system
like INScore 3 , featuring a powerful dynamic signals rep-
resentation system [7], provides a close examination of the
computation results.

2.4 Open issues and future works

Generally, the labeling scheme for a GUI doesn’t result in
an optimal OSC address space definition. Moreover, there
are potential conflicts between the FAUST UI labels and
the OSC address space since some characters are reserved
for OSC pattern matching and thus forbidden in the OSC
naming scheme. The latter issue is handled with automatic
characters substitutions. The first issue could be solved us-
ing the metadata scheme and will be considered in a future
release.

Another issue, resulting from the design flexibility, relies
on dynamic aggregation of multiple architectures covering
the same domain: for example, it would be useful to em-
bed both a standard and the OSC audio architecture in the
same module and to switch dynamically between (for de-
bugging purposes for example). That would require the UI
to include the corresponding control and thus a mechanism
to permit the UI extension by the UI itself would be neces-
sary.

3. SELF MATHEMATICAL DOCUMENTATION

Another recent addition to the FAUST compiler is the Self
Mathematical Documentation developped within ASTREE,
an ANR funded research project (ANR 08-CORD-003) on
preservation of real-time music works involving IRCAM,
GRAME, MINES-PARISTECH and UJM-CIEREC.

The problem of documentation is well known in com-
puter programming at least since 1984 and Donald Knuth’s
claim [8]: “I believe that the time is ripe for significantly
better documentation of programs [...].”

A quarter-century later, general purpose programming lan-
guages can use doxygen, javadoc or others Literate Pro-
gramming tools. But computer music languages lack in-

3 http://inscore.sf.net

tegrated documentation systems and preservation of real-
time music works is a big issue [9].

The self mathematical documentation extension to the
FAUST compiler precisely addresses this question for digi-
tal signal processing (unfortunately not yet the asynchronous
and more complex part). It provides a mean to automati-
cally compute an all-comprehensive mathematical docu-
mentation of a FAUST program under the form of a com-
plete set of LATEX formulas and diagrams.

One can distinguish four main goals, or uses, of such a
self mathematical documentation:

1. Preservation, i.e. to preserve signal processors, in-
dependently from any computer language but only
under a mathematical form;

2. Validation, i.e. to bring some help for debugging tasks,
by showing the formulas as they are really computed
after the compilation stage;

3. Teaching, i.e. to give a new teaching support, as a
bridge between code and formulas for signal pro-
cessing;

4. Publishing, i.e. to output publishing material, by prepar-
ing LATEX formulas and SVG block diagrams easy to
include in a paper.

The first and likely most important goal of preservation
relies on the strong assumption that maths will last far
longer than any computer language. This means that once
printed on paper, a mathematical documentation becomes
a long-term preservable document, as the whole semantics
of a DSP program is translated into two languages indepen-
dant from any computer language and from any computer
environment: the mathematical language, mainly, and the
natural language, used to structure the presentation for the
human reader and also to precise some local mathemati-
cal items (like particular symbols for integer operations).
Thus, the mathematical documentation is self-sufficient to
a programmer for reimplementing a DSP program, and
shall stay self-sufficient for decades and probably more!

3.1 The faust2mathdoc Command

The FAUST self mathematical documentation system relies
on two things: a new compiler option --mathdoc and a
shell script faust2mathdoc. The script first calls faust
--mathdoc, which generates:

• a top-level directory suffixed with ”-mdoc”,

• 5 subdirectories (cpp/, pdf/, src/, svg/, tex/),

• a LATEX file containing the formulas,

• SVG files for the block diagrams;

then it just finishes the work done by the FAUST compiler,

• moving the output C++ file into cpp/,

• converting all SVG files into PDF files,

• launching pdflatex on the LATEX file,
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• moving the resulting pdf file into pdf/.

For example, the command

faust2mathdoc noise.dsp

will generate the following hierarchy of files :

� noise-mdoc/

� cpp/

� noise.cpp

� pdf/

� noise.pdf

� src/

� math.lib
� music.lib
� noise.dsp

� svg/

� process.pdf
� process.svg

� tex/

� noise.pdf
� noise.tex

3.2 Automatic Mode

The user has the possibility to introduce in the FAUST pro-
gram special tags to control the generated documentation.
When no such tags are introduced, we are in the so-called
automatic mode. In this case everything is automatic and
the generated PDF document is structured in four sections:

1. “Mathematical definition of process”

2. “Block diagram of process”

3. “Notice”

4. “Faust code listings”

3.2.1 Front Page

First, to give an idea, let’s look at the front page of a math-
ematical documentation. Figure 3 shows the front page
of the PDF document generated from the freeverb.dsp
FAUST program (margins are cropped).

The header items are extracted from the metadatas de-
clared in the FAUST file:

declare name "freeverb";
declare version "1.0";
declare author "Grame";
declare license "BSD";
declare copyright "(c)GRAME 2006";

The date of the documentation compilation is inserted
and some glue text is added to introduce each section and
the document itself. So, in addition to the mathematical
language, the document also relies on the natural language,
but one can legitimately expect it to last far longer than any
current computer language.

freeverb

Grame

March 14, 2011

name freeverb
version 1.0
author Grame
license BSD
copyright (c)GRAME 2006

This document provides a mathematical description of the Faust program text
stored in the freeverb.dsp file. See the notice in Section 3 (page 5) for details.

1 Mathematical definition of process

The freeverb program evaluates the signal transformer denoted by process,
which is mathematically defined as follows:

1. Output signals yi for i ∈ [1, 2] such that

y1(t) = p4(t) · x1(t) + us3(t) · r2(t)

y2(t) = p4(t) · x2(t) + us3(t) · r38(t)

2. Input signals xi for i ∈ [1, 2]

3. User-interface input signals usi for i ∈ [1, 3] such that

• Freeverb/

”Damp” us1(t) ∈ [ 0, 1 ] (default value = 0.5)
”RoomSize” us2(t) ∈ [ 0, 1 ] (default value = 0.8)
”Wet” us3(t) ∈ [ 0, 1 ] (default value = 0.8)

4. Intermediate signals pi for i ∈ [1, 4], si for i ∈ [1, 3] and ri for i ∈ [1, 72]
such that

p1(t) = 0.4 · us1(t)

p2(t) = (1− p1(t))

p3(t) = (0.7 + 0.28 · us2(t))

1

Figure 3. Front page excerpt.

3.2.2 Mathematical definition of process

The first printed section contains whole mathematical defi-
nition of process. Obviously, the computation of the for-
mulas printing is the most important part of the mathemat-
ical documentation.

To handle a LATEX output for the mathematical documen-
tation, instead of using a simple pattern matching substitu-
tion, the FAUST compiler has been extended from within,
by reimplementing the main classes, in order to print a nor-
malized form of the equations. This means that like the
standard C++ output of the compiler, the LATEX output is
computed after the compilation of the signal processors,
thus benefiting from all simplifications and normalizations
that the FAUST compiler is able to do.

Some printed formulas are shown on Figure 3 (from the
freeverb.dsp file) and Figure 4 (from HPF.dsp, a high-
pass filter), as they appear in the corresponding generated
PDF documents.

On Figure 3, one can see the definition of three kinds of
signals, while on Figure 4 one can see two other kinds,
and these are exactly the five families of signals that are
handled:

• “Output signals”,

• “Input signals”,

• “User-interface input signals”,

• “Intermediate signals”,

• “Constant signals”.

In fact, the documentator extension of the FAUST com-
piler manages several kinds of signals and makes a full use
of FAUST signal tagging capabilities to split the equations.
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”Q” us2(t) ∈ [ 0.01, 100 ] (default value = 1)

4. Intermediate signals pi for i ∈ [1, 8] and r1 such that

p1(t) = k1 ·max (0, us1(t))

p2(t) = cos (p1(t))

p3(t) = 2 · p2(t)

p4(t) = 0.5 · sin (p1(t))

max (0.001, us2(t))

p5(t) = (p4(t)− 1)

p6(t) = (1 + p2(t))

p7(t) = 0.5 · p6(t)

p8(t) =
1

1 + p4(t)

r1(t) = p8(t) · (x1(t−1) · (0− (p6(t)− x2(t))) + p7(t) · x1(t)

+ p7(t) · x1(t−2) + p5(t) · r1(t−2) + p3(t) · r1(t−1))

5. Constant k1 such that

k1 =
6.28318530717959

fS

2 Block diagram of process

The block diagram of process is shown on Figure 1 (page 3).

3 Notice

• This document was generated using Faust version 0.9.36 on March 14,
2011.

• The value of a Faust program is the result of applying the signal trans-
former denoted by the expression to which the process identifier is bound
to input signals, running at the fS sampling frequency.

2

Figure 4. Some printed formulas.

This is very important for human readability’s sake, or else
there would be only one very long formula for process!
The documentator pushes this idea a step further than the
five main signal families, using letters and numeric indices
to name the left member of each subequation.

The indices are easy to understand: on Figure 3 for ex-
ample, mentions like “y1(t)”, “y2(t)” and “Input signals
xi for i ∈ [1, 2]” clearly indicates that the freeverb block
diagram has two input signals and two output signals, i.e.
is a stereo signal transformer.

The letter choice is a bit more complex, summarised in
Table 4.

3.2.3 Fine mathematical automatic display

3.2.4 Block diagram of process

The second section draws the top-level block diagram of
process, i.e. a block diagram that fits on one page. The
appropriate fitting is computed by the FAUST compiler part
that handles the SVG output.

Figure 1 shows the block diagram computed from the
noise.dsp file (a noise generator). By default, the top-
level SVG block diagram of process is generated, con-
verted into the PDF format through the svg2pdf utility
(using the 2D graphics Cairo library), entitled and inserted
in the second section of the documentation as a floating
LATEX figure (in order to be referenceable).

3.2.5 Notice

The third section presents the notice, to enlighten the doc-
umentation, divided in two parts:

• a common header (shown on Figure 6);

• a dynamic mathematical body (an example is shown
on Figure 7, from the capture.dsp file).

Letter Signal Type
y(t) Output signal
x(t) Input signal
ub(t) User-interface button input signal
uc(t) User-interface checkbox input signal
us(t) User-interface slider input signal
un(t) User-interface numeric box input signal
ug(t) User-interface bargraph output signal
p(t) Intermediate parameter signal

(running at control rate)
s(t) Intermediate simple signal

(running at sample rate)
r(t) Intermediate recursive signal

(depends on previous samples r(t− n))
q(t) Intermediate selection signal

(2 or 3-ways selectors)
m(t) Intermediate memory signal

(1-sample delay explicitely initialized)
v(t) Intermediate table signal

(read or read-and-write tables)
k(t) Constant signal

Table 4. Sub-signal formulas naming.

For later reading improvement purposes, the first part in-
tensively uses the natural language to contextualize the doc-
umentation as much as possible, giving both contextual
information – with the compiler version, the compilation
date, a block diagram presentation, FAUST and SVG URLs,
the generated documentation directory tree – and key ex-
planations on the FAUST language itself, its (denotational)
mathematical semantics – including the process identi-
fier, signals and signal transformers semantics.

3.2.6 Faust code listings

The fourth and last section provides the complete listings.
All FAUST code is inserted into the documentation, the
main source code file and all needed librairies, using the
pretty-printer system provided by the listings LATEX pack-
age.

You may wonder why we print FAUST code listings while
the FAUST language is also affected by our mathematical
abstraction moto that maths will last far longer than any
computer language... It is mainly to add another help item
for contextualization! Indeed, depending on the signal pro-
cessing algorithms and implementations, some FAUST code
can prove extremely helpful to understand the printed for-
mulas, in the view of reimplementing the same algorithm
in decades under other languages.

3.3 Manual Documentation

You can specify yourself the documentation instead of us-
ing the automatic mode, with five xml-like tags. That per-
mits to modify the presentation and to add your own com-
ments, not only on process, but also about any expression
you’d like to. Note that as soon as you declare an <mdoc>
tag inside your FAUST file, the default structure of the au-
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                                p_{4}(t) = 0.5 *
\frac{\sin\left(p_{1}(t)\right)}{\max\left( 0.001, {u_s}_{2}(t) \right)}
                \end{dmath*}
                \begin{dmath*}
                                p_{5}(t) =  \left(p_{4}(t) - 1\right) 
                \end{dmath*}
                \begin{dmath*}
                                p_{6}(t) =  \left(1 + p_{2}(t)\right) 
                \end{dmath*}
                \begin{dmath*}
                                p_{7}(t) = 0.5 * p_{6}(t)
                \end{dmath*}
                \begin{dmath*}
                                p_{8}(t) = \frac{1}{1 + p_{4}(t)}
                \end{dmath*}
        \end{dgroup*}

        \begin{dgroup*}
                \begin{dmath*}
                                r_{1}(t) = p_{8}(t) *  \left(x_{1}(t\!-\!1) *  \left(0 -
  \left(p_{6}(t) - x_{2}(t)\right) \right)  + p_{7}(t) * x_{1}(t) + p_{7}(t) *
x_{1}(t\!-\!2) + p_{5}(t) * r_{1}(t\!-\!2) + p_{3}(t) * r_{1}(t\!-\!1)\right) 
                \end{dmath*}
        \end{dgroup*}

\item Constant $k_1$ such that
        \begin{dgroup*}
                \begin{dmath*}
                                k_{1} = \frac{6.28318530717959}{f_S}
                \end{dmath*}
        \end{dgroup*}

\end{enumerate}

\section{Block  diagram of \texttt { process }}
\label{diagram}

The block diagram of \texttt{process} is shown on Figure\,\ref{figure1}
(page\,\pageref{figure1}).
\begin{figure}[ht!]
        \centering
        \includegraphics[width=\textwidth]{../svg/svg-01/process}
        \caption{Block diagram of \texttt{process}}
        \label{figure1}
\end{figure}

\section{Notice}
\label{notice}

\begin{itemize}
        \item This document was generated using Faust version
\faustversion\ on \faustdocdate.
        \item The value of a Faust program is the result of applying the
signal transformer denoted by the expression to which the
\texttt{process} identifier is bound to input signals, running at the $f_S$
sampling frequency.
        \item Faust (\emph{Functional Audio Stream}) is a functional
programming language designed for synchronous real-time signal
processing and synthesis applications. A Faust program is a set of
bindings of identifiers to expressions that denote signal transformers. A
signal $s$ in $S$ is a function mapping\footnote{Faust assumes that

Figure 5. Corresponding LaTeX formulas’ code.

tomatic mode is ignored, and all the LATEX stuff becomes
up to you!

Here are the six specific tags:

• <mdoc></mdoc> to open a documentation field in
the FAUST code,

– <equation></equation> to get equations of
a FAUST expression,

– <diagram></diagram> to get the top-level
block-diagram of a FAUST expression,

– <metadata></metadata> to reference FAUST
metadatas,

– <notice /> to insert the “adaptive” notice of
all formulas actually printed,

– <listing [attributes] /> to insert the list-
ing of FAUST files called,

@ mdoctags=[true|false]

@ dependencies=[true|false]

@ distributed=[true|false]

3.4 Practical Aspects

3.4.1 Installation Requirements

Here follows a summary of the installation requirements to
generate the mathematical documentation:

• faust, of course!

• svg2pdf (from the Cairo 2D graphics library), to
convert block diagrams, as LATEX doesn’t handle SVG
directly yet...

• breqn, a LATEX package to manage automatic break-
ing of long equations,

• pdflatex, to compile the LATEX output file.

3 Notice

• This document was generated using Faust version 0.9.36 on March 14,
2011.

• The value of a Faust program is the result of applying the signal trans-
former denoted by the expression to which the process identifier is bound
to input signals, running at the fS sampling frequency.

• Faust (Functional Audio Stream) is a functional programming language
designed for synchronous real-time signal processing and synthesis appli-
cations. A Faust program is a set of bindings of identifiers to expressions
that denote signal transformers. A signal s in S is a function mapping1

times t ∈ Z to values s(t) ∈ R, while a signal transformer is a function
from Sn to Sm, where n,m ∈ N. See the Faust manual for additional
information (http://faust.grame.fr).

• Every mathematical formula derived from a Faust expression is assumed,
in this document, to having been normalized (in an implementation-depen-
dent manner) by the Faust compiler.

• A block diagram is a graphical representation of the Faust binding of an
identifier I to an expression E; each graph is put in a box labeled by I.
Subexpressions of E are recursively displayed as long as the whole picture
fits in one page.

• The BPF-mdoc/ directory may also include the following subdirectories:

– cpp/ for Faust compiled code;

– pdf/ which contains this document;

– src/ for all Faust sources used (even libraries);

– svg/ for block diagrams, encoded using the Scalable Vector Graphics
format (http://www.w3.org/Graphics/SVG/);

– tex/ for the LATEX source of this document.

4 Faust code listings

This section provides the listings of the Faust code used to generate this docu-
ment, including dependencies.

Listing 1: BPF.dsp✞ ☎
1 import("maxmsp.lib");
2

1 s t Z s(t) = 0 t 0

3

Figure 6. Common header of the notice.

3.4.2 Generating the Mathematical Documentation

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
FAUST file, as the -mdoc option leave the documentation
production unfinished. For example:

faust2mathdoc myfaustfile.dsp

The PDF file is then generated in the appropriate directory
myfaustfile-mdoc/pdf/myfaustfile.pdf.

3.4.3 Online Examples

To have an idea of the results of this mathematical doc-
umentation, which captures the mathematical semantic of
FAUST programs, you can look at two pdf files online:

• http://faust.grame.fr/pdf/karplus.pdf
(automatic documentation),

• http://faust.grame.fr/pdf/noise.pdf
(manual documentation).

3.5 Conclusion

We have presented two extensions to the FAUST compiler :
an architecture system that provides OSC support to FAUST
generated applications, and an automatic documentation
generator able to produce a full mathematical description
of any FAUST program.

The idea behind the FAUST’s architecture system is sep-
aration of concerns between the DSP computation itself
and its use. It turns out to be a flexible and powerful idea:
any new or improved architecture file, like here OSC sup-
port, benefits to all applications without having to modify
the FAUST code itself. We have also split some of these
architectures into separate Audio and UI modules that are
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3 Notice

• This document was generated using Faust version 0.9.36 on March 14,
2011.

• The value of a Faust program is the result of applying the signal trans-
former denoted by the expression to which the process identifier is bound
to input signals, running at the fS sampling frequency.

• Faust (Functional Audio Stream) is a functional programming language
designed for synchronous real-time signal processing and synthesis appli-
cations. A Faust program is a set of bindings of identifiers to expressions
that denote signal transformers. A signal s in S is a function mapping1

times t ∈ Z to values s(t) ∈ R, while a signal transformer is a function
from Sn to Sm, where n,m ∈ N. See the Faust manual for additional
information (http://faust.grame.fr).

• Every mathematical formula derived from a Faust expression is assumed,
in this document, to having been normalized (in an implementation-depen-
dent manner) by the Faust compiler.

• A block diagram is a graphical representation of the Faust binding of an
identifier I to an expression E; each graph is put in a box labeled by I.
Subexpressions of E are recursively displayed as long as the whole picture
fits in one page.

• x ∈ R,

int(x) =






x if x 0
x if x 0
0 if x = 0

.

• This document uses the following integer operations:

operation name semantics
i integer addition normalize(i+ ), in Z
i integer substraction normalize(i− ), in Z
i integer multiplication normalize(i · ), in Z

Integer operations in Faust are inspired by the semantics of operations
on the n-bit two’s complement representation of integer numbers; they
are internal composition laws on the subset [−2n−1, 2n−1−1 ] of Z, with
n = 32. For any integer binary operation × on Z, the operation is
defined as: i = normalize(i× ), with

normalize(i) = i− · sign(i) ·
�
|i|+ 2 + (sign(i)−1) 2

�
,

where = 2n and sign(i) = 0 if i = 0 and i |i| otherwise. Unary integer
operations are defined likewise.

1 s t Z s(t) = 0 t 0

3

Figure 7. Dynamic part of a printed notice.

• The noisemetadata-mdoc/ directory may also include the following sub-
directories:

– cpp/ for Faust compiled code;

– pdf/ which contains this document;

– src/ for all Faust sources used (even libraries);

– svg/ for block diagrams, encoded using the Scalable Vector Graphics
format (http://www.w3.org/Graphics/SVG/);

– tex/ for the LATEX source of this document.

4 Listing of the input code

The following listing shows the input Faust code, parsed to compile this math-
ematical documentation.

Listing 1: noisemetadata.dsp✞ ☎
1 //-----------------------------------------------------------------
2 // Noise generator and demo file for the Faust math documentation
3 //-----------------------------------------------------------------
4

5 declare name "Noise";
6 declare version "1.1";
7 declare author "Grame";
8 declare author "Yghe";
9 declare license "BSD";

10 declare copyright "(c)GRAME 2009";
11

12

13 random = +(12345)~*(1103515245);
14

15

16 noise = random/2147483647.0;
17

18

19 process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);✝ ✆

4

Figure 8. Faust code listing.

easier to maintain or evolve. This provides another layer
of flexibility.

The self mathematical documentation system, while not
simple to develop, turns out to be feasible because FAUST
has a simple and well defined semantic. It is therefore pos-
sible to compute a semantic description of what a FAUST
program does whatever its complexity. Moreover this se-
mantic description was readily available inside the FAUST
compiler because already used to optimize the generated
C++ code.

This example shows that semantics is not only of theo-
retical interest and can have very practical benefits. We
would like therefore to encourage developers to consider
this aspect, as well as preservation issues, when designing
new audio/music tools or languages.
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